Skip to main content

Ion Channels of Three Microbes: Paramecium, Yeast and Escherichia Coli

  • Chapter
Book cover Calcium and Ion Channel Modulation

Abstract

Although the ion channels of vertebrates, and larger invertebrates have been the focus of channel research in the past and at the present, some studies of the channels of microbes have been made. The microbial channels were found to have many similar and a few different features from those of the metazoan channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., 1969, Chemoreceptors in bacteria, Science, 166:1588–1597.

    Article  Google Scholar 

  • Benz, R., Janko, K., Boos, W. and Läuger, P., 1978, Formation of large ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli, Biochim. Biophys. Acta, 511:305–319.

    Article  Google Scholar 

  • Benz, R., 1985, Porin from bacteria and mitochondrial outer membranes, CRC Crit. Rev. Biochem., 19:145–190.

    Article  Google Scholar 

  • Benz, R., 1986, Analysis and chemical modification of bacterial porins, in: “Ion Channel Reconstitution,” C. Miller, ed., Plenum Press, New York.

    Google Scholar 

  • Britten, R.J. and McClure, F.T., 1962, The amino acid pool of Escherichia coli, Bact. Rev., 26:292–335.

    Google Scholar 

  • Eckert, R., 1972, Bioelectric control of ciliary activity, Science, 176:473–481.

    Article  Google Scholar 

  • Ehrlich, B.E., Finkelstein, A., Forte, M. and Kung, C., 1984, Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers, Science, 225:427–428.

    Article  Google Scholar 

  • Fujita, N., Nelson, N., Fox, T.D., Claudio, T., Lindstrom, J., Riezman, H. and Hess, G.P., 1986, Biosynthesis of the Torpedo californica acetylcholine receptor subunit in yeast, Science, 231:1284–1287.

    Article  Google Scholar 

  • Fujita, N., Sweet, M.T., Fox, T.D., Nelson, N., Claudio, T., Lindstrom, J.M. and Hess, G., 1987, Expression of cDNA for acetylcholine receptor subunits in yeast cell plasma membrane, Biochem. Soc. Symp., 52: (in press).

    Google Scholar 

  • Gustin, M.C., Martinac, B., Saimi, Y., Culbertson, M.R. and Kung, C., 1986, Ion channels in yeast, Science, 233:1195–1197.

    Article  Google Scholar 

  • Gustin, M.C., Zhou, X.L., Martinac, B., Culbertson, M.R. and Kung, C., 1987, Stretch-activated cation channel in yeast, Biophys. J., 51:251a.

    Google Scholar 

  • Haga, N. and Hiwatashi, K., 1982, A soluble gene product controlling membrane excitability in Paramecium, Cell Biol. Int. Rep., 6:295–300.

    Article  Google Scholar 

  • Haga, N., Saimi, Y., Takahashi, M. and Kung, C., 1983, Intra and interspecific complementation of membrane-inexcitable mutants of Paramecium, J. Cell Biol., 97:378–382.

    Article  Google Scholar 

  • Haga, N., Forte, M., Ramanathan, R., Hennessey, T., Takahashi, M. and Kung, C., 1984, Characterization and purification of a soluble protein controlling Ca-channel activity in Paramecium, J. Cell Biol., 39:71–78.

    Google Scholar 

  • Hammil, O.P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F.J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 391:85–100.

    Article  Google Scholar 

  • Hinrichsen, R.D. and Saimi, Y. 1984, A mutation that alters properties of the calcium channel in Paramecium tetraurelia, J. Physiol., 351:397–410.

    Google Scholar 

  • Hinrichsen, R.D., Amberger, E., Saimi, Y., Burgess-Cassler, A. and Kung, C., 1985a, Genetic analysis of mutants with a reduced Ca++-dependent K+ current in Paramecium tetraurelia, Genetics, 111:433–445.

    Google Scholar 

  • Hinrichsen, R.D., Saimi, Y., Ramanathan, R., Burgess-Cassler, A. and Kung, C., 1985b, A genetic and biochemical analysis of behavior in Paramecium, in: “Sensing and Responses in Microorganisms,” M. Eisenbach and M. Balaban, eds., Elsevier Sci. Pub., New York.

    Google Scholar 

  • Kamada, T. and Kinosita, H., 1940, Calcium-potassium factor in ciliary reversal of Paramecium, Jap. Acad. Proc, 16:125–130.

    Google Scholar 

  • Kinosita, H., Dryl, S. and Naitoh, Y. 1964a, Changes in the membrane potential and the response to stimuli in Paramecium, J. Fac. Sci. Tokyo Univ. (Sect. IV), 10:291–301.

    Google Scholar 

  • Kinosita, H., Dryl, S. and Naitoh, Y. 1964b, Relation between the magnitude of membrane potential and ciliary activity in Paramecium, J. Fac. Sci. Tokyo Univ. (Sect IV), 10:303–309.

    Google Scholar 

  • Klee, C.B., Crouch, T.H. and Richman, P.G. 1980, Calmodulin, Ann. Rev. Biochem., 49:489–515.

    Article  Google Scholar 

  • Kretsinger, R.H. 1980, Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem., 8:119–174.

    Article  Google Scholar 

  • Kung, C., 1971a, Genic mutations with altered system of excitation in Paramecium aurelia. I. Phenotypes of the behavioral mutants, Z. Vergl. Physiol., 71:142–164.

    Article  Google Scholar 

  • Kung, C., 1971b, Genic mutations with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants, Genetics, 69:29–45.

    Google Scholar 

  • Kung, C. and Eckert, R. 1972, Genetic modification of electric properties in an excitable membrane, Proc. Natl. Acad. Sci. USA, 69:93–97.

    Article  Google Scholar 

  • Kung, C. and Saimi, Y., 1982, The physiological basis of taxes in Paramecium, Ann. Rev. Physiol., 44:519–534.

    Article  Google Scholar 

  • Martinac, B., Saimi, Y., Gustin, M. and Kung, C., 1986, Single-channel recording in Paramecium, Biophys. J., 49:167a.

    Article  Google Scholar 

  • Martinac, B., Buechner, M., Delcour, A.H., Adler, J. and Kung, C., 1987, A pressure-sensitive ion channel in Escherichia coli, Proc. Natl. Acad. Sci. USA, (in press).

    Google Scholar 

  • Naitoh, Y., 1968, Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis, J. Gen. Physiol., 51:85–103.

    Article  Google Scholar 

  • Naitoh, Y. and Eckert, R., 1969, Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation, Science, 164:963–965.

    Article  Google Scholar 

  • Oertel, D., Schein, S.J. and Kung, C., 1977, Separation of membrane currents using a Paramecium mutant, Nature, 268:120–124.

    Article  Google Scholar 

  • Ramanathan, R., Saimi, Y., Hinrichsen, R.D., Burgess-Cassler, A. and Kung, C., 1986, A genetic dissection of ion-channel functions in Paramecium, in: “Paramecium,” H.D. Gertz, ed., Springer Verlag, Heidelberg, (in press).

    Google Scholar 

  • Richard, E.A., Saimi, Y. and Kung, C., 1986, A mutation that increases a novel calcium-activated potassium conductance of Paramecium tetraurelia, J. Membrane Biol., 91:173–181.

    Article  Google Scholar 

  • Ruthe, H.-J. and Adler, J., 1985, Fusion of bacterial spheroplasts by electric fields, Biochim. Biophys. Acta, 819:105–113.

    Article  Google Scholar 

  • Saimi, Y., Hinrichsen, R.D., Forte, M. and Kung, C., 1983, Mutant analysis shows that the calcium induced potassium current shuts off one type of excitation in Paramecium, Proc. Natl. Acad. Sci. USA, 80:5112–5116.

    Article  Google Scholar 

  • Schaefer, W.H., Lukas, T.J., Blair, I.A., Schultz, J.E. and Watterson, D.M., 1987a, Amino acid sequence of a novel calmodulin from Paramecium tetraurelia that contains dimethyl-lysine in the first domain, J. Biol. Chem., (in press).

    Google Scholar 

  • Schaefer, W.H., Hinrichsen, R.D., Burgess-Cassler, A., Kung, C., Blair, I.A. and Watterson, D.M., 1987b, A mutant Paramecium with a defective calcium-dependent potassium channel has an altered calmodulin: a non-lethal selective alteration in calmodulin regulation, Proc. Natl. Acad. Sci. USA, (in press).

    Google Scholar 

  • Schindler, H. and Rosenbusch, J., 1978, Matrix protein from Escherichia coli outer membrane forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. USA, 75:3751–3755.

    Article  Google Scholar 

  • Tondravi, M.T. and Yao, M.-C., 1986, Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes. Proc. Natl. Acad. Sci. USA, 83:4369–4373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Martinac, B., Saimi, Y., Gustin, M.C., Kung, C. (1988). Ion Channels of Three Microbes: Paramecium, Yeast and Escherichia Coli . In: Grinnell, A.D., Armstrong, D., Jackson, M.B. (eds) Calcium and Ion Channel Modulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0975-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0975-8_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8273-0

  • Online ISBN: 978-1-4613-0975-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics