Skip to main content

Control of the Generation and Removal of Calcium-Mediated Inactivation of the Calcium Current in Helix Aspersa Neurons

  • Chapter
Calcium and Ion Channel Modulation

Abstract

The level of intracellular calcium is the hub of many control processes, providing a transduction of electrical activity into biochemical control. Depolarizing activity in excitable cells activates voltage-dependent calcium currents (Hagiwara and Byerly, 1981; Tsien 1983: McCleskey et al., 1986), which can be regenerative, resulting in a rapid increase in the activity of intracellular calcium ions in the vicinity of the channel. The elevation in intracellular calcium is closely controlled by buffering processes and subsequent extrusion of the calcium (Baker, 1976, 1987) maintaining a low resting level of calcium; uncontrolled and generalized increases in calcium being toxic (Hajos et al., 1986). Under physiological conditions spatially and temporally restricted elevations in the level of free calcium (Chad and Eckert, 1984; Simon and Llinas, 1985) are responsible for control of ion channels and the transduction of electrical activity into responses such as exocytosis and contraction. The increased level of calcium modulates calcium-dependent enzymes, such as those linked to calmodulin (Klee et al., 1980; Stoclet et al., 1986), to alter their activity and hence generate a diversity of responses. The intracellular calcium ions can act as second messengers to control and modulate ionic channels, producing activation (Meech 1978; Colquhoun et al., 1981; Yellen, 1982) or inactivation (Chad and Eckert, 1984), and play a pivotal role in rhythmic activity (Hermann et al., this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, A., Cohen, P., Santikarn, S., Williams, D.H., Calder, A.G., Smith, A. and Klee, C.B., 1982, Identification of the NH2-terminal blocking group of calcineurin B as myristic acid. FEBS Letters 150:314–318.

    Article  Google Scholar 

  • Aoyagi, T, Miyatu, S., Nanbo, M., Koyima, F., Matsuyaki, M., Isizuka, M. Takeuchi, T. and Umezawa, H., 1969, Biological activities of leupeptins. Journal of Antibiotics 22:558–561.

    Google Scholar 

  • Armstrong, D. and Eckert, R., 1987, Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proceedings of the National Academy of Sciences of the USA. (in press)

    Google Scholar 

  • Baker, P., 1976, The regulation of intracellular calcium. In: “Calcium in Biological Systems”, Cambridge University Press, Cambridge.

    Google Scholar 

  • Baker, P., 1987, In: “Calcium and the Cell”, CIBA Symposium series.

    Google Scholar 

  • Bandle, E. F. and Levitan, I. B., 1977, Cyclic AMP-stimulated phosphorylation of a high molecular weight endogenous protein substrate in sub-cellular fractions of molluscan nervous systems. Brain Research 125:325–331.

    Article  Google Scholar 

  • Bean, P. B., Nowycky, M. C. and Tsien, R. W., 1984, Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307:371–375.

    Article  Google Scholar 

  • Bookman, R. J. and Liu, Y., 1987, Calcium channel currents in cultured retzius cells of the leech. Biophysical Journal 51:226a.

    Google Scholar 

  • Brehm, P. and Eckert, R. O., 1978, Calcium entry leads to inactivation of the calcium current in Paramecium. Science N.Y. 202:1203–1206.

    Article  Google Scholar 

  • Brezina, V., Eckert, R. and Erxleben, C., 1987, Suppression of calcium current by an endogenous neuropeptide in neurones of Aplysia Californica. Journal of Physiology. (in press)

    Google Scholar 

  • Byerly, L. and Hagiwara, S., 1982, Calcium currents in internally perfused nerve cell bodies of Lymnaea stagnalis. Journal of Physiology 322:503–528.

    Google Scholar 

  • Byerly, L. and Yazejian, B., 1986, Intracellular factors for the maintenance of calcium currents in perfused neurons of the snail Lymnaea stagnalis. Journal of Physiology 370:631–650.

    Google Scholar 

  • Carbone, E. and Lux, H. D., 1984, A low voltage-activated, calcium conductance in embryonic chick sensory neurons. Biophysical Journal 46:413–418.

    Article  Google Scholar 

  • Cavalie, A., Ochi, R., Pelzer, D. and Trautwein, W., 1983, Elementary currents through calcium channels in guinea-pig myocytes. Pflugers Archiv 398:284–297.

    Article  Google Scholar 

  • Chad, J. E. and Eckert, R. O., 1984, Calcium “domains” associated with individual channels may account for anomalous voltage relations of Ca-dependent responses. Biophysical Journal 45:993–999.

    Article  Google Scholar 

  • Chad, J. and Eckert, R., 1985, Calcineurin, a calcium-dependent phosphatase, enhances Ca-mediated inactivation of Ca current in perfused snail neurons. Biophysical Journal 47:266a.

    Google Scholar 

  • Chad, J. E. and Eckert, R., 1986, An enzymatic mechanism for calcium current inactivation in dialyzed Helix neurons. Journal of Physiology 378:31–51.

    Google Scholar 

  • Chad, J., Eckert, R. and Ewald, D., 1983, Kinetics of calcium current inactivation simulated with an heuristic model. Biophysical Journal 41:61a.

    Google Scholar 

  • Chad, J. E., Eckert, R. and Ewald, D., 1984, Kinetics of Ca-dependent inactivation of calcium current in neurones of Aplysia californica. Journal of Physiology 347:279–300.

    Google Scholar 

  • Chad, J., Kaiman, D. and Armstrong, D., 1987, The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels. Journal of General Physiology. (in press)

    Google Scholar 

  • Cheung, W. Y., 1984, Calmodulin: its potential role in cell proliferation and heavy metal toxicity. Federation proceedings 43:2995–2999.

    Google Scholar 

  • Cohen. P., 1982, The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296:613–620.

    Article  Google Scholar 

  • Colquhoun, D., Neher, E. Reuter, H. and Stevens C. F., 1981, Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–757.

    Article  Google Scholar 

  • Connor, J. and Stevens, C., 1971, Voltage clamp studies of a transient outward membrane current in gastropod neural somata. Journal of Physiology 213:21–30.

    Google Scholar 

  • Curtis, B. M. and Caterall, W. A., 1984, Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal transverse tubules. Biochemistry 23:2113–2118.

    Article  Google Scholar 

  • Curtis, B. M. and Caterall, W. A., 1985, Phosphorylation of the calcium antagonist receptor of the voltage sensitive calcium channel by cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the USA. 82:2528–2532.

    Article  Google Scholar 

  • Doroshenko, P. A., Kostyuk, P. G., Martynyuk, A. I., 1982, Intracellular metabolism of adenosine 3′-5′-cyclic monophosphate and calcium inward current in perfused neurones of Helix pomatia. Neuroscience 7:2125–2134.

    Article  Google Scholar 

  • Doroshenko, P. A., Kostyuk, P. G., Martynyuk, A. I., Kursky, M. D. and Vorobetz, Z. D., 1984, Intracellular protein kinase and calcium inward currents on perfused neurones of the snail Helix pomatia. Neuroscience 11:263–267.

    Article  Google Scholar 

  • Eckert, R. and Chad, J. E., 1984, Inactivation of calcium currents. Progress in Biophysics and Molecular Biology 44:215–267.

    Article  Google Scholar 

  • Eckert, R. and Ewald, D., 1983a, Calcium tail currents in voltage-clamped intact nerve cell bodies of Aplysia californica. Journal of Physiology 345:533–548.

    Google Scholar 

  • Eckert, R. and Ewald, D., 1983b, Inactivation of calcium conductance characterised by tail current measurements in neurones of Aplysia californica. Journal of Physiology 345:549–565.

    Google Scholar 

  • Eckert, R. and Tillotson, D., 1981, Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. Journal of Physiology 314:265–280

    Google Scholar 

  • Farber, L., Lanetta, F., Kirby, T. and Wolff, D. J., 1985, Calmodulin dependent phosphatase of PC-12, C-6-Glioma and GH3 pituitary adenoma cell lines. Neuroscience Abstracts 11:855

    Google Scholar 

  • Fenwick, E. M., Marty, A. and Neher, E., 1982, Sodium and calcium channels in bovine chromaffin cells. Journal of Physiology 331:599–635.

    Google Scholar 

  • Forscher, P. and Oxford, G. S., 1985, Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. Journal of General Physiology 85:743–763.

    Article  Google Scholar 

  • Hagiwara, S. and Byerly, L., 1982, Calcium channel. Annual Review of Neuroscience 4:69–125.

    Article  Google Scholar 

  • Hagiwara, S. and Nakajima, S., 1966, Effects of the intracellular Ca ion concentration upon the excitability of the muscle fiber membrane of a barnacle. Journal of General Physiology 49:807–818.

    Article  Google Scholar 

  • Haiech, J. and Dmaille, J. G., 1981, Supramolecular organisation of regulatory proteins into calcisomes: a model of the concerted regulation by calcium ions and cyclic adenosine 3′-5′-monphosphate in eukaryotic cells. In: “Metabolic interconversion of Enzymes”, Proc. in Life Sciences:303–313 Springer Verlag, Berlin.

    Google Scholar 

  • Hajos, F. Garthwaite, G. and Garthwaite, J., 1986, Reversible and irreversible neuronal damage caused by excitatory amino acid analogues in rat cerebellar slices. Neuroscience 18:417–436.

    Article  Google Scholar 

  • Hathaway, D. R., Adelstein, R. S. and Klee, C. B., 1981, Interaction of calmodulin with myosin light chain kinase and cyclic AMP-dependent protein kinase in bovine brain. Journal of Biological Chemistry 230:8183–8189.

    Google Scholar 

  • Hemmings, H. C., Greengard, P., Lim Tung, H. Y. and Cohen, P., 1984, DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310:503–505.

    Article  Google Scholar 

  • Hess, P., Lansman, J. B. and Tsien, R. W., 1986, Calcium channel selectivity for divalent and monovalent cations. Voltage-and concentration-dependence of single channel current in guinea pig ventricular heart cells. Journal of General Physiology 88:293–319.

    Article  Google Scholar 

  • Holzer, H. and Heinrich, P. C., 1980, Control of proteolysis. Annual review of Biochemistry 49:63–91.

    Article  Google Scholar 

  • Hosey, M. M., Borsetto, M. and Lazdunski, M., 1986, Phosphorylation and dephosphorylation of dihydropyridine sensitive voltage-dependent calcium channel in skeletal muscle membranes by cAMP-and Ca-dependent processes. Proceedings of the National Academy of Sciences of the USA. 83:3733–3737.

    Article  Google Scholar 

  • Kaiman, D., Erxleben, C. and Armstrong, D., 1987, Inactivation of the dihydropyridine-sensitive calcium current in GH3 cells is a calcium-dependent process. Biophysical Journal 51:432a.

    Google Scholar 

  • Kameyama, M., Hofmann, F. and Trautwein, W., 1985, On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea pig heart. Pflugers Archiv 405:285–293.

    Article  Google Scholar 

  • Kameyama, M., Hescheler, J., Mieskes, G. and Trautwein, W., 1986, The protein-specific phosphatase 1 antagonizes the beta-adrenergic increase in the cardiac Ca current. Pflugers Archiv 407:461–463.

    Article  Google Scholar 

  • Klee, C. B., Crouch, T. H. and Krinks, M. H., 1979, Calcineurin: A calcium and calmodulin-binding protein of the nervous system. Proceedings of the National Academy of Sciences of the USA. 76:6270–6273.

    Article  Google Scholar 

  • Klee, C. B., Crouch, T. H. and Richman, P. G., 1980, Calmodulin. Annual Review of Biochemistry 49:489–515.

    Article  Google Scholar 

  • Kostyuk, P. G. and Krishtal, O. A., 1977, Separation of sodium and calcium currents in the somatic membrane of mollusc neurons. With an Appendix by Shakhovalov, Yu A. Journal of Physiology 270:545–568.

    Google Scholar 

  • Lee, K. S., Akaike, N. and Brown, A. M., 1978, Properties of internally perfused, voltage-clamped, isolated nerve cell bodies. Journal of General Physiology 71:489–507.

    Article  Google Scholar 

  • Lee, K. S., Marban, E. and Tsien, R. W., 1985, Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. Journal of Physiology 364:395–411.

    Google Scholar 

  • McCleskey, E. W., Fox, A. P., Feldman, D. and Tsien, R. W., 1986, Different types of calcium channels. Journal of Experimental Biology 124:177–190.

    Google Scholar 

  • Meech, R. W., 1978, Calcium dependent-potassium activation in nervous tissues. Annual Review of Biophysics and Bioengineering 7:1–18.

    Article  Google Scholar 

  • Mentrard, D., Vassort, G. and Fischmeister, R., 1984, Calcium-mediated inactivation of the calcium conductance in caesium-loaded frog heart cells. Journal of General Physiology 83:105–131.

    Article  Google Scholar 

  • Murachi, T., 1983, Intracellular Ca protease and its inhibitor protein: Calpain and calpastatin. In: “Calcium and Cell function”, vol. IV. ed. Cheung, W.Y. pp. 377–410, Academic Press.

    Google Scholar 

  • Nilius, B., Hess, P., Lansman, J. B. and Tsien, R. W., 1985, A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446.

    Article  Google Scholar 

  • Nilius, B. and Roder, A., 1985, Direct evidence of Ca-sensitive inactivation of slow inward channels in frog atrial myocardium. Biomedical and Biochemical Acta 44:1151–1161.

    Google Scholar 

  • Novak-Hofer, I., Lemof, S., Villemain, M. and Levitan, I. B., 1985, Calcium and Cyclic nucleotide-dependent protein kinases and their substrates in the Aplysia nervous system. Journal of Neuroscience 5:151–159.

    Google Scholar 

  • Nowycky, M. C., Fox, A. P. and Tsien, R. W., 1984, Two components of calcium channel current in chick dorsal root ganglion cells. Biophysical Journal 45:36a.

    Google Scholar 

  • Nowycky, M. C., Fox, A. P. and Tsien, R. W., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443.

    Article  Google Scholar 

  • Osterrieder, W., Brum, G. Hescheler, J., Trautwein, W., Flockerzi, V. and Hofman, R., 1982, Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates calcium current. Nature 298:576–578.

    Article  Google Scholar 

  • Plant, T. D. and Standen, N. B., 1981, Calcium current inactivation in identified neurones of Helix aspersa. Journal of Physiology 321:273–285.

    Google Scholar 

  • Plant, T. D., Standen, N. B. and Ward, T. A., 1983, The effects of injection of calcium ions and calcium chelators on calcium channel inactivation in Helix neurones. Journal of Physiology 334:189–212.

    Google Scholar 

  • Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574.

    Article  Google Scholar 

  • Saitoh, T. and Schwartz, J. H., 1983, Serotonin alters the subcellular distribution of a calcium/calmodulin-binding protein in neurons of Aplysia. Proceedings of the National Academy of Sciences of the USA. 80:6708–6712.

    Article  Google Scholar 

  • Sasaki, T., Kikuchi, T., Yomoto, N., Yoshimura, N. and Murachi, T., 1984, Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. Journal of Biological Chemistry 259:12489–12494.

    Google Scholar 

  • Simon, S. M. and Llinas, R. R., 1985, Compartmentalization of the submembrane calcium activity during calcium flux and its significance in transmitter release. Biophysical Journal 48:485–498.

    Article  Google Scholar 

  • Standen, N. B. and Stanfield, P. R., 1982, A binding-site model for calcium channel inactivation that depends on calcium entry. Proceedings of the Royal Society of London. B 217:101–110.

    Article  Google Scholar 

  • Stewart, A. A., Ingbretsen, T. S., Manalan, A., Klee, C. B. and Cohen, P., 1982, Discovery of a Ca-and calmodulin-dependent protein phosphatase: probable identity with calcineurin, CaM-BP 80). FEBS Letters 137:80–84.

    Article  Google Scholar 

  • Stoclet, J. C., Gerard, D., Kilhoffer, M-C., Lugnier, C. Miller, R. and Schaeffer, P., 1986, Calmodulin and its role in intracellular calcium regulation. Progress in Neurobiology, (in press)

    Google Scholar 

  • Tillotson, D., 1979, Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proceedings of the National Academy of Sciences of the USA. 77:1497–1500.

    Article  Google Scholar 

  • Tsien, R. W., Hess, P., McCleskey, E. W. and Rosenberg, R. L., 1987, Calcium channels: Mechanisms of selectivity, permeation and block. Annual Review of Biophysics and Biophysical Chemistry. (in press)

    Google Scholar 

  • Tsien, R. W., 1983, Calcium channels in excitable cell membranes. Annual Review of Physiology 45:341–358.

    Article  Google Scholar 

  • Tsien, R. W., Giles, W. and Greengard, P., 1972, Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nature New Biology 240:181–183.

    Google Scholar 

  • Yellen, G., 1982, Single calcium-activated non-selective cation channels in neuroblastoma. Nature 296:357–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Chad, J. (1988). Control of the Generation and Removal of Calcium-Mediated Inactivation of the Calcium Current in Helix Aspersa Neurons. In: Grinnell, A.D., Armstrong, D., Jackson, M.B. (eds) Calcium and Ion Channel Modulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0975-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0975-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8273-0

  • Online ISBN: 978-1-4613-0975-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics