Small Conductance Ca Activated K Channels in Mollusks

  • A. Hermann
  • C. Erxleben
  • D. Armstrong


In many cells intracellular Ca ions activate a conductance to K ions in the plasma membrane. Among the cells where this property of Ca ions was detected first were neurons from the marine mollusk, Aplysia californica (Meech, 1976). The biophysical, pharmacological and physiological properties of that K conductance have now been studied in detail in molluscan neurons. The K conductance is not only sensitive to calcium ions but also intrinsically voltage-dependent. Probing the internal Ca receptor site with different divalent cations has revealed that ions such as cadmium or strontium also activate these K channels effectively (Gorman and Hermann, 1979). Pharmacological studies further showed that the Ca activated K current is highly sensitive to block by external tetraethylammonium (TEA) and that other types of K currents in these cells are not equally sensitive to TEA or 4-aminopyridine (4-AP) (Hermann and Gorman, 1981a, b; Hermann and Hartung, 1986). The physiological properties attributed to the Ca dependent conductance include a contribution to the repolarization and after-hyperpolarization of action potentials, post-tetanic hyperpolarization, frequency adaptation, and the termination of bursting pacemaker potentials (Meech, 1978; Hermann and Hartung, 1983).


Outward Current Single Channel Conductance Pacemaker Activity Single Channel Recording Molluscan Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abia, A., Lobaton, C. D., Moreno, A., and Garcia-Sancho, J., 1986, Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+channels. Biochem. et Biophys. Acta, 856:403.CrossRefGoogle Scholar
  2. Adams, W. B., and Levitan, I. B., 1985, Voltage and ion dependence of the slow currents which mediate bursting in Aplysia neurone R15, J. Physiol., 360:69.Google Scholar
  3. Barrett, J. N., Magleby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol., 331:211.Google Scholar
  4. Colquoun, D., Neher, E., Reuter, H., and Stevens, C. F., 1981, Inward current channels activated by intracellular Ca in cultured cardiac cells, Nature, 294:752.CrossRefGoogle Scholar
  5. Cook, N. S., and Haylett, D. G., 1985, Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes, J. Physiol., 358:373.Google Scholar
  6. Ewald, D. A., Williams, A., and Levitan I. B., 1985, Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation, Nature, 315:503.CrossRefGoogle Scholar
  7. Gorman, A. L. F., and Hermann, A., 1979, Internal effects of divalent cations on potassium permeability in molluscan neurones, J. Physiol., 296:393.Google Scholar
  8. Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1981, Intracellular calcium and the control of neuronal pacemaker activity, Fed. Proc., 40:2233.Google Scholar
  9. Gorman, A. L. F., and Hermann, A., 1982, Quantitative differences in the currents of bursting and beating molluscan pacemaker neurones, J. Physiol., 333:681.Google Scholar
  10. Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1982, The ionic requirements for membrane oscillations and their dependence upon the free intracellular calcium concentration in a molluscan pacemaker neurone, J. Physiol., 327:185.Google Scholar
  11. Hamill, O. P., Marty, E., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch clamp techniques for high resolution current recording from cell and cell-free membrane patches, Pflueg. Arch., 391:85.CrossRefGoogle Scholar
  12. Hartung, K., and Hermann, A., 1987, Fluctuations of Ca2+-activated K+current in Aplysia neurones, Biochim. et Biophys. Acta, 897:201.CrossRefGoogle Scholar
  13. Hermann, A., and Erxleben, C., 1987, Charybdotoxin selectively blocks Ca activated K channels in Aplysia neurones, J. Gen. Physiol. (in press).Google Scholar
  14. Hermann, A., and Hartung, K., 1982, Properties of a Ca2+ activated K+ conductance in Helix neurones investigated by intracellular Ca2+ ionophoresis, Pflueg. Arch., 393:248.CrossRefGoogle Scholar
  15. Hermann, A., and Hartung, K., 1983, Ca2+ activated K+ conductance in molluscan neurones, Cell Calcium, 4:387.CrossRefGoogle Scholar
  16. Hermann, A., and Hartung, K., 1986, Pharmacological aspects of Ca activated K conductance in molluscan neurones, in: “Calcium electrogenesis and neuronal functioning”, U. Heinemann, M. Klee, E. Neher and W. Singer, ed., Exp. Brain Res. 14:124.Google Scholar
  17. Hermann, A., and Gorman, A. L. F., 1981a, Effects of 4-aminopyridine on potassium currents in a molluscan neuron, J. Gen. Physiol., 78:63.CrossRefGoogle Scholar
  18. Hermann, A., and Gorman, A. L. F., 1981b, Effects of tetraethylammonium on potassium currents in a molluscan neuron, J. Gen. Physiol., 78:87.CrossRefGoogle Scholar
  19. Hodgkin, A. L., and Katz, B., 1949, The effects of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol., 108:37.Google Scholar
  20. Johnson, J. W., and Thompson, S. H., 1983, Calcium dependence of resting neuronal conductance, Soc. Neurosci., Abstr., 9:1187.Google Scholar
  21. Kramer, R. H., and Zucker, R. S., 1985, Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones, J. Physiol., 362:131.Google Scholar
  22. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Memb. Biol., 71:11.CrossRefGoogle Scholar
  23. Lux, H. D., Neher, E., and Marty, A., 1981, Single channel activity associated with the calcium dependent outward current in Helix pomatia, Pflueg. Arch., 389:293.CrossRefGoogle Scholar
  24. Marty, A., 1983, Ca2+-dependent K+ channels with large unitary conductance, Trends in Neurosci., 6:262.CrossRefGoogle Scholar
  25. Meech, R. W., 1976, Intracellular calcium and the control of membrane permeability. In Calcium in Biological Systems. Symp. Soc. exp. Biol. no. 30. pp. 161–191. Cambridge University Press.Google Scholar
  26. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Ann. Rev. Biophys. Bioeng., 8:1.CrossRefGoogle Scholar
  27. Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M., 1985, Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature, 313:316.CrossRefGoogle Scholar
  28. Pallotta, B. S., 1985, N-bromoacetamide removes a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle, J. Physiol., 86:601.Google Scholar
  29. Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones, Nature, 299:413.CrossRefGoogle Scholar
  30. Smith, S. J., and Thompson, S. H., 1987, Slow membrane currents in bursting pace-maker neurones of Tritonia. J. Physiol., 382:425. Korrektur am 26.3.87.Google Scholar
  31. Tashjian, A.H., 1979, Clonal strains of hormone-producing pituitary cells. Methods Enzymol., 57:527–535.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. Hermann
    • 1
  • C. Erxleben
    • 2
  • D. Armstrong
    • 3
  1. 1.Institute of ZoologyUniversity of SalzburgSalzburgAustria
  2. 2.Faculty of BiologyUniversity of KonstanzKonstanzGermany
  3. 3.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations