Fully Numerical Solution of Hartree-Fock and Similar Equations for Diatomic Molecules

  • Pekka Pyykkö
Part of the Recent Progress in Many-Body Theories book series (RPMT, volume 1)

Abstract

The Hartree-Fock equations

$$\rm F \psi_{a}=(T+V_n+V_c+V_x)\psi_{a}=\varepsilon _{a}\psi_{a}+\sum_{a\neq b}\varepsilon_{ab}\psi_{a}$$
(1)

(T = -∇2/2m, n = nuclear, c = electronic Coulomb, x = exchange) for molecules are commonly solved in quantum chemistry by the “linear combination of atomic orbitals (LCAO)” approach, using either Slater or Gaussian A0: s (exp (-ζr) or exp (−αr2), respectively). This procedure always contains a basis-set truncation error.

Keywords

Lithium Hydride Beryllium HeNe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    L. Laaksonen, P. Pyykkö and D. Sundholm, Two-dimensional fully numenumerical solutions of molecular Schrodinger equations. I. One-electron molecules, Int. J. Quantum Chem. 23, 309–317 (1983).CrossRefGoogle Scholar
  2. 2.
    L. Laaksonen, P. Pyykkö and D. Sundholm, Two-dimensional fully numerical solutions of molecular Schrodinger equations. II. Solution of the Poisson equation and results for singlet states of H2 and HeH+, Int. J. Quantum Chem. 23, 319–323 (1983).CrossRefGoogle Scholar
  3. 3.
    L. Laaksonen, P. Pyykkö and D. Sundholm, Two-dimensional fully numerical solutions of molecular Hartree-Fock equations: LiH and BH, Chem. Phys. Lett. 96, 1–3 (1983).CrossRefGoogle Scholar
  4. 4.
    L. Laaksonen, D. Sundholm and P. Pyykkö, Two-dimensional, fully numerical molecular calculations. IV. Hartree-Fock-Slater results on second-row diatomic molecules, Int. J. Quantum Chem. 27, 601–612 (1985).CrossRefGoogle Scholar
  5. 5.
    L. Laaksonen, D. Sundholm and P. Pyykkö, Two-dimensional fully numerical MC SCF calculations on H2 and LiH: The dipole moment of LiH, Chem. Phys. Lett. 105, 573–576 (1984).CrossRefGoogle Scholar
  6. 6.
    D. Sundholm, P. Pyykkö, L. Laaksonen and A.J. Sadlej, Nuclear quadrupole moment of lithium from combined fully numerical and1 discrete basis-set calculations on LiH, Chem. Phys. Lett. 112,1–9 (1984).CrossRefGoogle Scholar
  7. 7.
    D. Sundholm, P. Pyykkö and L. Laaksonen, Fully numerical HFS calculations on Cr2: Basis-set truncation error on the bond length and interaction of the semicore orbitals, Finn. Chem. Lett. 51–55 (1985).Google Scholar
  8. 8.
    D. Sundholm, P. Pyykkö and L. Laaksonen, Two-dimensional, fully numerical molecular calculations. VIII. Electric field gradients of diatomic hydrides LiH-C1H at the HFS level, Mol. Phys. 55, 627–635 (1985).CrossRefGoogle Scholar
  9. 9.
    D. Sundholm, P. Pyykkö, L. Laaksonen and A.J. Sadlej, Nuclear quadrupole moment of nitrogen from combined fully numerical and discrete basis-set calculation on N0+ and N2, Chem. Phys. 101, 219–225 (1986).CrossRefGoogle Scholar
  10. 10.
    D. Sundholm, P. Pyykkö and L. Laaksonen, Two-dimensional, fully numerical molecular calclations. X. Hartree-Fock results for He2, Li2, Be2, HF, 0H-, N2, CO, BF, N0+ and CN-, Mol. Phys. 56, 1411–1418 (1985).CrossRefGoogle Scholar
  11. 11.
    P. Pyykkö, D. Sundholm and L. Laaksonen, Two-dimensional, fully numerical molecular calcuations. XI. Hartree-Fock results for BeH+, LiHe+, CH+, NeH+, C2, BeO, LiF, NaH, MgH+, HeNe, LiNa, and F2, Mol. Phys. 60, 597–604 (1987).CrossRefGoogle Scholar
  12. 12.
    P. Pyykkö, G. H. F. Diercksen, F. Miiller-Plathe and L. Laaksonen, Fully numerical Hartree-Fock calculaitons on the third-row diatomics A1F, SiO, PN, CS, BC1, SH- and P2, Chem. Phys. Lett. 134, 575–578 (1987).CrossRefGoogle Scholar
  13. 13.
    P. Pyykkö, G. H. F. Diercksen, F. Miiller-Plathe and L. Laaksonen, Fully numerical Hartree-Fock molecular calculations on NaF, MgO, BeS and ArH+. The dipole moment of ArH+, Chem. Phys. Lett. (to be submitted). (References 1–13 form the Parts 1–13 of our “2D series”).Google Scholar
  14. 14.
    G.H.F.Diercksen, A.J. Sadlej, D. Sundholm and P. Pyykkö, Towards an accurate determination of the nuclear quadrupole moment of Li from molecular data: LiF, Chem. Phys. Lett. (submitted).Google Scholar
  15. 15.
    E. J. Baerends, P. Vernooijs, A. Rozendaal, P. M. Boerrigter, M. Krijn, D. Feil and D. Sundholm, Basis set effects on the electron density and spectroscopic properties of CO, J. Mol. Struc. (Theochem) 133, 147–159 (1985).CrossRefGoogle Scholar
  16. 16.
    L. Laaksonen, Fully Numerical, One- and Two-Dimensional Solutions of Molecular Schrodinger and Dirac Equations: The Lone-Pair Problem, Techn. Dr. Thesis, Abo Akademi, Finland (1983).Google Scholar
  17. 17.
    L. Laaksonen and I.P. Grant, Two-dimensional fully numerical solutions of molecular Dirac equations. One-electron molecules, Chem. Phys. Lett. 109, 485–487 (1984).CrossRefGoogle Scholar
  18. 18.
    L. Laaksonen and I.P. Grant, Two-dimensional fully numerical solutions of molecular Dirac equations. Results for ground singlet states of H2 and HeH+, Chem. Phys. Lett. 112, 157–159 (1984).CrossRefGoogle Scholar
  19. 19.
    D. Sundholm, P. Pyykkö and L. Laaksonen, Two-dimensional, fully numerical solutions of second-order Dirac equations for diatomic molecules. Part 3, Phys. Scripta 36, 400–402 (1987).CrossRefGoogle Scholar
  20. 20.
    D. Sundholm, Applications of Fully Numerical, Two-Dimensional Self-Consistent Methods on Diatomic Molecules, Ph.D. Thesis, University of Helsinki, Finland (1985).Google Scholar
  21. 21.
    L. Laaksonen, P. Pyykkö and D. Sundholm, Fully numerical Hartree-Fock methods for molecules, Comp. Phys. Rep. 4, 313–344 (1986).CrossRefGoogle Scholar
  22. 22.
    E.A. McCullough, Jr., Seminumerical SCF calculations on small diatomic molecules, Chem. Phys. Lett. 24, 55–58 (1974).CrossRefGoogle Scholar
  23. 23.
    E.A. McCullough, Jr., Numerical Hartree-Fock methods for diatomic molecules: A partial-wave expansion approach, Comp. Phys. Rep. 4-, 265–312 (1986).Google Scholar
  24. 24.
    H. Partridge, I. Mendenhall, K. W. Richman and E. A. McCullough, Jr., Numerical Hartree-Fock calculations on transition metal diatomics, American Conf. on Theor. Chem., Gull Lake MN, July 25–31, 1987, paper 19B.Google Scholar
  25. 25.
    L. Adamowicz and R.J. Bartlett, Numerical coupled Hartree-Fock study of the total (electronic and nuclear) parallel polarizability and hyperpolarizability for the FH, H2 +, HD+ and D2 + moleculesJ. Chem. Phys. 84, 4988–4991 (1986).CrossRefGoogle Scholar
  26. 26.
    L. Adamowicz and R.J. Bartlett, Coupled cluster calculations with numerical orbitals for excited states of polar anions, J. Chem. Phys. 83, 6268–6274 (1985).CrossRefGoogle Scholar
  27. 27.
    A.D. Becke, Numerical Hartree-Fock Slater calculations on diatomic molecules, J. Chem. Phys. 76, 6037–6045 (1982).CrossRefGoogle Scholar
  28. 28.
    A.D. Becke, Completely numerical calculations on diatomic molecules in the local-density approximation, Phys. Rev. A 33, 2786–2788 (1986).CrossRefGoogle Scholar
  29. 29.
    M. Defrancheschi, M. Suard and G. Berthier, Numerical solution of Hartree-Fock equations for a polyatomic molecule: Linear H3 in momentum space, Int. J. Quantum Chem. 25, 863–867 (1984).CrossRefGoogle Scholar
  30. 30 (a).
    W. K. Ford and F. S. Levin, Channel-coupling theory of molecular structure. Finite-element method solution for H2 +, Phys. Rev. A 29, 43–51 (1984).CrossRefGoogle Scholar
  31. (b).
    W. Schulze and D. Kolb, H2 + correlation diagram from finite element calculations, Chem. Phys. Lett. 122, 271–275 (1985).CrossRefGoogle Scholar
  32. 31.
    D. Heinemann, D. Kolb and B. Fricke, H2 solved by finite element method, Chem. Phys. Lett. 137, 180–182 (1987).CrossRefGoogle Scholar
  33. 32.
    M. Mishra, J. Linderberg and Y. Öhrn, Characterization of adiabatic states in triatomic collisions, Chem. Phys. Lett. 111, 439–444 (1984).CrossRefGoogle Scholar
  34. 33.
    N. Sato and S. Iwata, Application of finite element method to the two-dimensional Schrödinger equation (to be published).Google Scholar
  35. 34 (a).
    (a) M.D. Feit, J.A. Fleck Jr. and A. Steiger, Solution of the Schrödinger equation by a spectral method, Comp. Phys. 47, 412–433 (1982).CrossRefGoogle Scholar
  36. (b).
    D. Kosloff and R. Kosloff, A Fourier method solution for the time-dependent Schrödinger equation as a tool in molecular dynamics, J. Comp. Phys. 52, 35–53 (1983).CrossRefGoogle Scholar
  37. 35.
    S.A. Alexander, R.L. Coldwell and H.J. Monkhorst, Polyatomic SCF calculations with numerical orbitals. II. Methods to reduce integration and truncation error, J. Comp. Phys. (in press).Google Scholar
  38. 36.
    R.A. Friesner, Solution of the Hartree-Fock equations by a pseudospectral method: Application to diatomic molecules, J. Chem. Phys. 85, 1462–1468 (1986).CrossRefGoogle Scholar
  39. 37.
    F.F. Grinstein, H. Rabitz and A. Askar, The multigrid method for accelerated solution of the discretized Schrödinger equation, J. Comp. Phys. 51, 423–443 (1983).CrossRefGoogle Scholar
  40. 38.
    S. Green, Quadrupole moment of Li, Phys. Rev. A 4, 251–253 (1971).CrossRefGoogle Scholar
  41. 39.
    A. Weiler, P. Egelhof, R. Caplar, O. Karban, D. Krämer, K.-H. Möbius, Z. Moroz, K. Rusek, E. Steffens, G. Tungate, K. Blatt, I. Koenig and D. Frick, Electromagnetic excitation of aligned 7Li nuclei, Phys. Rev. Lett. 55, 480–483 (1985).CrossRefGoogle Scholar
  42. 40.
    T. Mertelmeier and H.M. Hofmann, Consistent cluster model description of the electromagnetic properties of lithium and beryllium nuclei, Nucl. Phys. A459, 387–416 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Pekka Pyykkö
    • 1
  1. 1.Department of ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations