Advertisement

Solitons in Nuclear Physics - A Review

  • Ernst F. Hefter

Abstract

Most of you will associate a certain picture with nuclear physics which should be precise enough for our purposes. But we should be more careful with the word soliton. The working definition which we are going to use is: Solitons are analytical solutions of (nonlinear partial) differential equations that behave like particles. In particular they emerge unchanged from collisions with each other — except for a possible phase shift in their relative positions — regaining for large times their asymptotic initial amplitudes, speeds and shapes.

Keywords

Soliton Solution Inverse Method Skyrme Force Density Disturbance Bound State Energy Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Bullough and P.J. Caudrey (eds.), "Solitons" Springer, Berlin Heidelberg New York (1980);Google Scholar
  2. G. Eilenberger, "Solitons. Mathematical Methods for Physicists" Springer, Berlin Heidelberg New York (1983).Google Scholar
  3. 2.
    D.J. Korteweg and G. de Vries, Phil.Ma. Ser. 539: 422 (1895).Google Scholar
  4. 3.
    .C.S. Gardener, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett.19: 1095 (1967).CrossRefGoogle Scholar
  5. 4.
    P. Lax, Commun. Pure and Appl. Math. 27: 97 (1968).Google Scholar
  6. 5.
    E.F. Hefter, Z. Physik C14:87 (1982);Google Scholar
  7. E.F. Hefter, Nuovo Cim.59A: 275 (1980).CrossRefGoogle Scholar
  8. 6.
    E.F. Hefter and K.A. Gridnev, Prog. Theor. Phys.72: 549 (1984).CrossRefGoogle Scholar
  9. 7.
    M. Wadati and M. Toda, J. Phys. Soc. Japan 32: 1403 (1972);CrossRefGoogle Scholar
  10. E.F. Hefter, Prog. Theor. Phys.69: 329 (1983).CrossRefGoogle Scholar
  11. 8.
    P. Schuur, "Asymptotic Analysis of Soliton Problems" Springer, Berlin Heidelberg New York (1986).Google Scholar
  12. 9.
    E.F. Hefter, Lett. Nuovo Cim. 32:9 (1981);CrossRefGoogle Scholar
  13. E.F. Hefter, in "Local Equilibrium in Strong Interaction Physics" D.K. Scott and R.M. Weiner, eds., World Scientific, Singapore (1985);Google Scholar
  14. E.F. Hefter and V.G. , Rapid Commun. JINR3 (23): 29 (1987).Google Scholar
  15. 10.
    J.W. Miles, J. Fluid Mech. 91:181 (1979);CrossRefGoogle Scholar
  16. D.J. Kaup and A.C. Newell, Proc. R. Soc. London A361: 413 (1978).Google Scholar
  17. 11.
    E.F. Hefter and K.A. Gridnev, Z. Naturforsch.38a: 813 (1983).Google Scholar
  18. 12.
    P. Ring and P. Schuck, "The Nuclear Many-Body Problem" Springer, Berlin Heidelberg New York (1980).Google Scholar
  19. 13.
    E.F. Hefter, Nuovo Cim. 89A: 217 (1985).CrossRefGoogle Scholar
  20. 14.
    J.B. McGuire, J. Math. Phys. 5:622 (1964);CrossRefGoogle Scholar
  21. M. Gaudin, Phys. Lett. 24A: 55 (1967).Google Scholar
  22. 15.
    F. Calogero and A. Degasperis, Phys. Rev. A11:265 (1975);Google Scholar
  23. E.H. Lieb and M. de Llano, J. Math. Phys.19: 860 (1978).CrossRefGoogle Scholar
  24. 16.
    L. Dolan, Phys. Rev. D13: 528 (1976).Google Scholar
  25. 17.
    B. Yoon and J.W. Negele, Phys. Rev.A16: 145 (1977).Google Scholar
  26. 17.
    M. de Llano, Nucl. Phys. A317:183 (1979).Google Scholar
  27. 17.
    H. Kuratsuji, Prog. Theor. Phys. 74:433 (1985);CrossRefGoogle Scholar
  28. H. Horiuchi, Prog. Theor. Phys.74: 66 (1985).CrossRefGoogle Scholar
  29. 20.
    Y. Nogami and C.S. Warke, Phys. Lett. 59A:251 (1976);Google Scholar
  30. Y. Nogami and C.S. Warke, Phys. Rev.C17: 1905 (1978).Google Scholar
  31. 21.
    P.B. Burt, Phys. Lett. 71A:19 (1979);Google Scholar
  32. P.B. Burt, "Quantum Mechanics of Nonlinear Waves" Harwood, Chur London New York (1981).Google Scholar
  33. 22.
    H. Reinhardt, Phys. Lett. 121B:9 (1983);Google Scholar
  34. H. Reinhardt, in: "Hartree-Fock and Beyond" K. Goeke and P.G. Reinhard, eds., Springer, Berlin Heidelberg New York (1982).Google Scholar
  35. 23.
    G. Pöschl and E. Teller, Z. Physik 83: 143 (1933).CrossRefGoogle Scholar
  36. A. Frank and K.B. Wolf, Phys. Rev. Lett. 52:1737 (1984);CrossRefGoogle Scholar
  37. Y. Alhassid, F. Gürsey, and I. Iachello, Ann. Phys. (N.Y.) 148: 346 (1983).CrossRefGoogle Scholar
  38. 25.
    R.D. Levine and C.E. Wulfman, Chem. Phys. Lett.60:372 (1979);CrossRefGoogle Scholar
  39. C. E. Wulfman, J. Phys. Chem.90: 2264 (1986).CrossRefGoogle Scholar
  40. 26.
    D.K. Campbell, in: "Nuclear Physics with Heavy Ions and Mesons" R. Balian et al., eds., North Holland, Amsterdam (1978).Google Scholar
  41. 27.
    J.J. Griffin and K.-K. Kan, Rev. Mod. Phys. 48:467 (1976);CrossRefGoogle Scholar
  42. K. Mikulas, K.A. Gridnev, E.F. Hefter, V.M. Semjonov, and V.B. Subbotin, Nuovo Cim. 93A:135 (1986);CrossRefGoogle Scholar
  43. E.A. Spiegel, Physica D1:236 (1980); and references.Google Scholar
  44. 28.
    V.A. Khodel, N.N. Kurilkin, and I.N. Mishustin, Phys. Lett. 90B:37 (1980);Google Scholar
  45. V.N. Kurilkin, I.N. Mishustin, and V.A. Khodel, Pis’ma Zh. Eksp. Teor Fiz. 30:463 (1979);Google Scholar
  46. Yad. Fiz. 32:1249 (1980) and 36: 95 (1982).Google Scholar
  47. 29.
    V.G. Kartavenko, Yad. Fiz. 40:377 (1984);Google Scholar
  48. V.G. Kartavenko, Dubna-Report P4-83-461 (1983).Google Scholar
  49. 30.
    G.N. Fowler, S. Raha, N. Stelte, and R.M. Weiner, Phys. Lett. 115B:286 (1982);Google Scholar
  50. S. Raha and R.M. Weiner, Phys. Rev. Lett. 50:407 (1983);CrossRefGoogle Scholar
  51. S. Raha, K. Wehrberger, and R.M. Weiner, Nucl. Phys. A433:427 (1984);Google Scholar
  52. E.F. Hefter, S. Raha, and R.M. Weiner, Phys. Rev. C32: 2201 (1985).Google Scholar
  53. 31.
    E.F. Hefter, J. de Phys. 45,C6:67 (1984);Google Scholar
  54. E.F. Hefter, Acta Phys. Pol. A65:377 (1984);Google Scholar
  55. E.F. Hefter, M. de Llano, and I.A. Mitropolsky, Anales de Fisica(Madrid) 81A: 185 (1985).Google Scholar
  56. 32.
    E.F. Hefter and I.A. Mitropolsky, LNPI-Report-860, Leningrad Nuclear Physics Institute, Gatchina (1983);Google Scholar
  57. Nuovo Cim. 95A:63 (1986).Google Scholar
  58. 33.
    K. Chadan and P.C. Sabatier, "Inverse Problems in Quantum Scattering Theory", Springer, Berlin Heidelberg New York (1977);Google Scholar
  59. B.N. Zakhariev and A.A. Suzko, "Potentials in Quantum Scattering — Direct and Inverse Problems" Springer, Berlin Heidelberg New York (in preparation).Google Scholar
  60. 34.
    E.F. Hefter, M. de Llano, and I.A. Mitropolsky, Phys. Rev. C30:2042 (1984);Google Scholar
  61. E.F. Hefter, Phys.Rev. A32: 1205 (1985).Google Scholar
  62. 35.
    C. Quigg and J.L. Rosner, Phys. Rev. 23D:2625 (1981);Google Scholar
  63. A. Asthana and A.N. Kamal, Z. Physik C19:37 (1983).Google Scholar
  64. 36.
    V.G. Kartavenko and P. Madler, Dubna-Report-P4-87-156(1987)Google Scholar
  65. 37.
    B. Fuchssteiner, (Univ. Paderborn, FRG) priv. commun. and to be published.Google Scholar
  66. 38.
    E.F. Hefter, Phys. Lett.141B: 5 (1984).Google Scholar
  67. 39.
    E.F. Hefter, Phys. Rev.34C: 1588 (1986).Google Scholar
  68. 40.
    I. Kay and H.E. Moses, J. Appl. Phys.27: 1503 (1956).CrossRefGoogle Scholar
  69. 41.
    I. Sabba-Stefanescu, J. Math. Phys. 23: 2190 (1982).CrossRefGoogle Scholar
  70. 42.
    E.F. Hefter, Verhandl. DPG(VI)21:490 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ernst F. Hefter
    • 1
  1. 1.Springer-VerlagHeidelberg 1Germany

Personalised recommendations