The Interaction of Intense Picosecond Infrared Pulses with Isolated Molecules

  • Eric Mazur


In the past decade there has been much interest in the dynamics of highly vibrationally excited and dissociating molecules. Selectivity at high levels of excitation may eventually lead to the realization of laser-controlled photochemistry, with broad applications in such diverse areas as laser-assisted chemical vapor deposition, isotope separation, and photosynthesis. Polyatomic molecules in the ground electronic state can reach levels of excitation up to the dissociation threshold by absorbing a large number of photons from a resonant high-power infrared laser. Despite the selectivity of infrared excitation at low energy, however, at high excitation the excitation energy is no longer confined to one ‘mode’. It has been shown experimentally that for molecules excited close to or above the dissociation threshold equilibration of energy occurs, in agreement with theoretical predictions. There is no agreement, however, as to the validity of theoretical models that presuppose equipartitioning of energy in the region below the dissociation threshold. Recent spontaneous Raman spectroscopy experiments on infrared multiphoton excited molecules in our laboratory provide information on the intramolecular vibrational energy distributions of highly vibrationally excited molecules in this region. The experimental results show that an excess of energy can remain in the pumped mode up to levels of excitation close to the dissociation threshold. This paper provides a review of the results that were obtained in the past three years, part of which were published previously.


Probe Pulse Raman Signal Polyatomic Molecule Excited Molecule Raman Active Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.R. Isenor, V. Merchant, R.S. Hallsworth and M.C. Richardson, Can. J. Phys. 51, 1281 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    V.N. Bagratashvili, V.S. Letokhov, A.A. Makarov, E.A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Academic Publishers, New York, 1985)Google Scholar
  3. 3.
    N. Bloembergen and E. Yablonovitch, Physics Today 5, 23 (1978)CrossRefGoogle Scholar
  4. 4.
    C.D. Cantrell, S.M. Freund, J.L. Lyman, Laser Handbook, Vol. 3, Ed. M.L. Stitch (North-Holland, Amsterdam, 1979)Google Scholar
  5. 5.
    P.A. Schultz, Aa. S. Sudbø, D.J. Krajnovitch, H.S. Kwok, Y.R. Shen, and Y.T. Lee, Ann. Rev. Phys. Chem. 30, 379 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    V.S. Letokhov, Physics Today 11, 34 (1980)CrossRefGoogle Scholar
  7. 7.
    W. Fuss and K.L. Kompa, Prog. Quant. Electr. 7, 117 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    D.S. King, Dynamics of the Excited State, Ed. K.P. Lawley (Wiley, New York, 1982)Google Scholar
  9. 9.
    J.G. Black, P. Kolodner, M.J. Schultz, E. Yablonovitch, N. Bloembergen, Phys. Rev. A19, 704 (1979)ADSGoogle Scholar
  10. 10.
    Y.T. Lee and Y.R. Shen, Physics Today 33, 52 (1980)CrossRefGoogle Scholar
  11. 11.
    J.D. Campbell, G. Hancock, J.B. Halpern, and K.H. Welge, Chem. Phys. Lett. 44, 404 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    D.S. King and J.C. Stephenson, Chem. Phys. Lett. 51, 48 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Frankel and T.J. Manuccia, Chem. Phys. Lett. 54, 451 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    R.C. Sharp, E. Yablonovitch and N. Bloembergen, J. Chem. Phys. 74, 5357 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    P. Mukherjee and H.S. Kwok, J. Chem. Phys. 84, 1285 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    V.N. Bagratashvili, Yu.G. Vainer, V.S. Dolzhikov, S.F. Kol’yakov, A.A. Makarov, L.P. Malyavkin, E.A. Ryabov, E.G. Silkis, and V.D. Titov, Appl. Phys. 22, 101 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    V.N. Bagratashvili, Yu.G. Vainer, V.S. Dolzhikov, S.F. Kol’yakov, V.S. Letokhov, A.A. Makarov, L.P. Malyavkin, E.A. Ryabov, E.G. Sil’kis, and V.D. Titov, Sov. Phys. JETP 53, 512 (1981)Google Scholar
  18. 18.
    V.N. Bagratashvili, Yu.G. Vainer, V.S. Doljikov, V.S. Letokhov, A.A. Makarov, L.P. Malyavkin, E.A. Ryabov, and E.G. Sil’kis, Opt. Lett. 6, 148 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    E. Mazur, I. Burak, and N. Bloembergen, Chem. Phys. Lett. 105, 258 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    Jyhpyng Wang, Kuei-Hsien Chen, and Eric Mazur, Phys. Rev. A 34, 3892 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    Eric Mazur, Rev. Sci. Instrum. 57, 2507 (1986)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Eric Mazur, Kuei-Hsien Chen, Eric Mazur, Proc. Int. Conf. on Lasers’86, 359 (1986)Google Scholar
  23. 23.
    Jyhpyng Wang, Kuei-Hsien Chen and Eric Mazur, Laser Chemistry, in pressGoogle Scholar
  24. 24.
    Kuei-Hsien Chen, Jyhpyng Wang and Eric Mazur, to be publishedGoogle Scholar
  25. 25.
    G. Herzberg, Molecular spectra and molecular structure, Vol. 2 (Van Nostrand Reinhold, New York, 1979)Google Scholar
  26. 26.
    Charles A. Bradley, Jr., Phys. Rev. 40, 908 (1932)ADSCrossRefGoogle Scholar
  27. 27.
    T. Shimanouchi, J. Phys. Chem. Ref. Data 6, 993 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    B.G. Sumpter and D.L. Thompson, J. Chem. Phys. 86, 2805 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Eric Mazur
    • 1
  1. 1.Division of Applied Sciences and Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations