Functional Implications Of Inferior Olivary Response Properties

  • A. R. Gibson
  • R. S. Gellman
Part of the NATO ASI Series book series (NSSA, volume 148)


The climbing fibre and mossy fibre systems supply afferent information to the cerebellum. To understand how these systems contribute to the control of movement, we must analyze the nature of the information that they transmit. The inferior olivary nucleus is a particularly attractive structure for such an analysis since it is the sole source of climbing fibres. Climbing fibres share many distinctive physiological properties and project to every part of the cerebellum. It seems likely that the functional significance of climbing fibre input will be similar for all parts of the cerebellum and of basic importance to cerebellar action.


Purkinje Cell Cerebellar Cortex Inferior Olive Climbing Fibre Nictitate Membrane Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus, J.S., 1971, A theory of cerebellar function. Math. Biosci. 10:25–61.CrossRefGoogle Scholar
  2. Andersson, G., and Armstrong, D.M., 1985, Climbing fibre input to b zone Purkinje cells during locomotor perturbation in the cat. Ninth annual meeting of the European Neuroscience Society, Oxford, England.Google Scholar
  3. Baker, J., Gibson, A., Glickstein, M., and Stein, J., 1976, Visual cells in the pontine nuclei of the cat. J. Physiol. 255:415–433.PubMedGoogle Scholar
  4. Barmack, N.H., and Hess, D.T., 1980, Multiple unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. J. Neurophysiol. 43:151–164.PubMedGoogle Scholar
  5. Berkley, K.J., and Hand, P.J., 1978, Projections to the Inferior Olive of the Cat. II. Comparisons of input from the Gracile, Cuneate and the Spinal Trigeminal Nuclei. J. Comp. Neurol. 180:253–264.PubMedCrossRefGoogle Scholar
  6. Bloedel, J.R., and Roberts, W.J., 1971, Action of climbing fibres in cerebellar cortex of the cat. J. Neurophysiol. 34:17–31.PubMedGoogle Scholar
  7. Boesten, A.J.P., and Voogd, J., 1975, Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J. Comp. Neurol. 141:215–238.Google Scholar
  8. Collewijn, H., 1975, Direction-selective units in the rabbit’s nucleus of the optic tract. Brain Res. 100:489–508.PubMedCrossRefGoogle Scholar
  9. Eccles, J.C., Llinas, R., and Sasaki, K., 1966, The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. 182:517–543.Google Scholar
  10. Eccles, J.C., Sabah, N.H., Schmidt, R.F., and Taborikova, H., 1972, Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. III. In Purkinje cells by climbing fibre input. Exp. Brain Res. 15:484–497.Google Scholar
  11. Ebner, T.J., and Bloedel, J.R., 1981, Role of climbing fibre afferent input in determining responsiveness of Purkinje cells to mossy fibre inputs. J. Neurophysiol. 5:962–971.Google Scholar
  12. Gellman, R., Gibson, A.R., and Houk, J.C., 1985, Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J. Neurophysiol. 54:40–60. v Gellman, R., Houk, J.C., and Gibson, A.R., 1983, Somatosensory properties of the inferior olive in the cat. J. Comp. Neurol. 215:228–243.PubMedCrossRefGoogle Scholar
  13. Grasse, K., and Cynader, M., 1984, Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. J. Neurophysiol. 51:276–293.PubMedGoogle Scholar
  14. Gray, B.G., and Dostrovsky, J.O., 1979, Modulation of the sensory responses of cat trigeminal and cuneate neurons by electrical stimulation of the red nucleus. Soc. Neurosci. Abstr. 9:247.Google Scholar
  15. Gray, B.G., and Destrovsky, J.O., 1984, Red nucleus modulation of somatosensory responses of cat spinal cord dorsal horn neurons. Brain Res. 311:171–175.PubMedCrossRefGoogle Scholar
  16. Helmholtz, H. von, 1925, Treatise on physiological optics. 3rd edition. Ed. and trans, by P.C. Southall, vol. 3. Menasha, Wis.: Optical Society of America.Google Scholar
  17. Hoffman, K-P, and Schoppmann, A., 1981, A quantitative analysis of the direction specific response of neurons in the cat1s nucleus of the optic tract. Exp. Brain Res. 42:146–157.CrossRefGoogle Scholar
  18. Houk, J.C., 1979, Motor control processes: new data concerning motoservo mechanism and a tentative model for SR Processing. In: Posture and Movement, R.E. Talbot and D.R. Humphrey, eds., Raven Press, New York.Google Scholar
  19. Huisman, A.M., Kuypers, H.G.J.M., and Verburgh, C.A., 1982, Differences in collateralization of the descending spinal pathways from red nucleus and other brainstem groups in cat and monkey. Prog. Brain Res. 57:185–217, H. Kuypers and G Martin, eds., Elsevier, Amsterdam.Google Scholar
  20. Ito, M., 1984, The Cerebellum and Neural Control. Raven Press, N.Y.Google Scholar
  21. Ito, M., and Simpson, J.I., 1971, Discharges in Purkinje cell axons during climbing fibre activation. Brain Res. 31:215–219.PubMedCrossRefGoogle Scholar
  22. Leicht, R., Rowe, M.J., and Schmidt, R.F., 1973, Cortical and peripheral modification of cerebellar climbing fibre activity arising from cutaneous mechanoreceptors. J. Physiol. 228:619–635.Google Scholar
  23. Llinas, R., and Yarom, Y., 1981, Electrophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. 203:549–567.Google Scholar
  24. Lou, J-S. and Bloedel, J.R., 1986, The responses of simultaneously recorded Purkinje cells to the perturbations of the step cycle in the walking ferret: a study using a new analytical method - the real-time postsynaptic response (RTPR). Brain Res. 365:340–344.Google Scholar
  25. Marr, D., 1969, A theory of cerebellar cortex. J. Physiol. 202:437–470.PubMedGoogle Scholar
  26. Martinez, F.F., Crill, W.E., and Kennedy, T.T., 1971, Electrogenesis of cerebellar Purkinje cell responses in cats. J. Neurophysiol. 34:348–356.PubMedGoogle Scholar
  27. Matin, L., Picoult, E., Stevens, J.K., Edwards, M.W., Young, D., and MacArthur, R., 1982, Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216:198–201.PubMedCrossRefGoogle Scholar
  28. McCormick, D.A., and Thompson, R.F., 1984, Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223:296–298.PubMedCrossRefGoogle Scholar
  29. McCormick, D.A., Steinmetz, J.E., and Thompson, R.F., 1985, Lesions of the inferior olivary complex caused extinction of the classically conditioned eyeblink response. Brain Res. 359:120–130.PubMedCrossRefGoogle Scholar
  30. Molinari, H.H., 1984, Ascending somatosensory projections to the dorsal accessory olive: An anatomical study in cats. J. Comp. Neurol. 223:110–123.PubMedCrossRefGoogle Scholar
  31. Mower, G., Gibson, A., Robinson, F., Stein, J., and Glickstein, M., 1980, Visual pontocerebellar projections in the cat. J. Neurophysiol. 43, 2:255–366.Google Scholar
  32. Oscarsson, O., 1968, Termination and functional organization of the ventral spino-olivocerebellar path. J. Physiol. 196:453–478.PubMedGoogle Scholar
  33. Oscarsson, O., 1969, Termination and functional organization of the dorsal x spino-olivocerebellar path. J. Physiol. 200:129–149.PubMedGoogle Scholar
  34. Pompeiano, O., and Brodal, A., 1957, Experimental demonstration of a soma- totopical origin of rubrospinal fibres in the cat. J. Comp. Neurol. 108:225–251.Google Scholar
  35. Rushmer, D.S., Roberts, W.J., and Augter, G.K., 1976, Climbing fibre responses of cerebellar Purkinje cells to passive movement of the cat forepaw. Brain Res. 106:1–20.Google Scholar
  36. Rushmer, D.S., Woollacott, M.H., Robertson, L.T., and Laxar, K.D., 1980, Somatotopic organization of climbing fibre projections from low threshold cutaneous afferents to pars intermedia of cerebellar cortex in the cat. Brain Res. 181:17–30.PubMedCrossRefGoogle Scholar
  37. Scheibel, M.E., and Scheibel, A.B., 1955, The inferior olive. A Golgi study. J. Comp. Neurol. 102:77–132.CrossRefGoogle Scholar
  38. Simpson, J.I. and Alley, K.E., 1974, Visual climbing fibre input to rabbit vestibulocerebellum: A source of direction-specific information. Brain Res. 82:302–308.PubMedCrossRefGoogle Scholar
  39. Simpson J.I., Soodak, R.E., and Hess, R., 1979, The accessory optic system and its relation to the vestibulocerebellum. In: Progress in brain research. Reflex control of posture and movement, R. Granit and O. Pompeiano, eds., Elsevier 50:715–724, Amsterdam.Google Scholar
  40. Takeda, T., and Maekawa, K., 1976, The origin of the protecto-olivary tract. A study using the horseradish peroxidase method. Brain Res. 117:319–325Google Scholar
  41. Thach, W.T.Jr., 1967, Somatosensory receptive fields of single units in cat cerebellar cortex. J. Neurophysiol. 30:675–696.PubMedGoogle Scholar
  42. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1984, Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res. 13:261–266.Google Scholar
  43. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1985, Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp. Brain Res. 60:87–98.Google Scholar
  44. Yeo, C.H., Hardiman, M.J., and Glickstein, M., 1985, Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp. Brain Res. 60:99–113.Google Scholar
  45. Weiss, C., McCurdy, M.L., Houk, J.C., and Gibson, A.R., 1985, Anatomy and physiology of dorsal column afferents to forelimb dorsal accessory olive. Soc. Neurosci. Abstr. 15:59.6.Google Scholar
  46. Weiss, C., 1986, The dorsal accessory olive: inhibitory gating by rubrospinal conditioning stimulation and physiology of its afferent neurons. Doctoral dissertation, Northwestern University, Evanston, Illinois.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. R. Gibson
    • 1
  • R. S. Gellman
    • 2
  1. 1.Barrow Neurological InstitutePhoenixUSA
  2. 2.Laboratory of Sensorimotor ResearchNational Eye Institute BethesdaUSA

Personalised recommendations