Skip to main content

Afferent Control of the Cerebellum. An Hypothesis to Explain the Differences in the Mediolateral Distribution of Mossy Fibre Terminals in the Cerebellar Cortex

  • Conference paper
Cerebellum and Neuronal Plasticity

Part of the book series: NATO ASI Series ((NSSA,volume 148))

Abstract

In this paper an hypothesis is developed which accounts for the different degree of clustering of mossy fibre terminals in strips within the granular layer and the relation between mossy and climbing fibres. The hypbthesis assumes that:

  • the activity of the smallest functional unit in the cerebellum, the corticonuclear microcomplex, is controlled by mossy fibre sources which operate in either a closed or open loop mode.

  • the generation of an error signal in the form of climbing fibre activity is primarily based on an efference copy of the activity of a mossy fibre source which functions in a closed loop feedback mode.

  • wrong input-output relations cannot be corrected with open loop mossy fibre input.

  • the closer the output of mossy fibre sources matches the error generating parameters, the closer the matching of climbing and mossy fibres in the cerebellar cortex.

  • cerebellar "learning" is based on the fact that the corrective action of the error signal, changes the efficacy of the granule cell axon — > Purkinje cell synapses in a non-specific direction.

The consequences of the hypothesis are discussed in relation to the distribution of cuneocerebellar and pontocerebellar mossy fibre terminals and in relation to afferents of the flocculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, J.S., 1971, A theory of cerebellar function. Math. Biosci. 10: 25–61.

    Article  Google Scholar 

  • Albus, K., Donate-Oliver, F., Sanides, D., and Fries, W., 1981, The distribution of pontine projection cells in visual and association cortex of the cat: An experimental study with horseradish peroxidase. J. Comp. Neurol. 201:175–189.

    Google Scholar 

  • Alley, K., Baker, R., and Simpson, J.I., 1975, Afferents to the vestibulo- cerebellum and the origin of visual climbing fibers in the rabbit. Brain Res. 98:582–589.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, G., and Nyquist, J., 1983, Origin and sagittal termination areas of cerebro-cerebellar climbing fibre paths in the cat. J. Physiol. 337:257–285.

    PubMed  CAS  Google Scholar 

  • Bishop, G.A., 1984, The origin of the reticulo-olivary projection in the rat: A retrograde horseradish peroxidase study. Neuroscience 11: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Bower, J.M., and Woolston, D.C., 1983, Congruence of the spatial organization of tactile projections to the granule cell and Purkinje cell layers of the cerebellar hemisphere of the albino rat: The vertical organization of cerebellar cortex. J. Neurophysiol. 49: 745–766.

    PubMed  CAS  Google Scholar 

  • Brand, S., Dahl, A.-L., and Mugnaini, E., 1976, The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp. Brain Res. 26:39–58.

    CAS  Google Scholar 

  • Brodal, A., and Brodal P., 1971, The organization of the nucleus reticularis tegmenti pontis in the cat light of experimental anatomical studies of its cerebral cortical afferents. Exp. Brain Res. 13:90–110.

    Article  Google Scholar 

  • Brodal, A., and Hoivik, B., 1964, Site and mode of termination of primary vestibulocerebellar fibers in the cat. An experimental study with silver impregnation methods. Arch. Ital. Biol. 102:1–21.

    CAS  Google Scholar 

  • Brodal, A., Lacerda, A.M., Destombes, J., and Angaut, P., 1972, The pattern in the projection of the intracerebellar nuclei onto the nucleus reticularis tegmenti pontis in the cat. An experimental anatomical study. Exp. Brain Res. 16:140–160

    Google Scholar 

  • Büttner-Ennever, J., 1979, Organization of reticular projections to oculomotor neurons. In: Progress in Brain Research, Vol. 50, Reflex control of posture and movement. Granit, R., and Pompeiano, O. (eds.). Elsevier, Amsterdam, pp. 619–630.

    Google Scholar 

  • Carleton, S.C., and Carpenter, M.B., 1984, Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res. 294:281–298.

    Article  PubMed  CAS  Google Scholar 

  • Cazin, L., Magnin, M., and Lannou, J., 1982, Non-cerebellar visual afferents to the vestibular nuclei involving the prepositus hypoglossal complex: an autoradiographic study in the rat. Exp. Brain Res. 48:309–313.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V., Palay, S.L., Brown, J.T., and Van Itallie, C., 1977, Sagittal organization of olivocerebellar and reticulocerebellar projections: Autoradiographic studies with 35-S-methionine. Exp. Brain Res. 30:561–576.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J.C., Ito, M., and Szentagothai, J., 1967, The cerebellum as a neuronal machine. Springer, New York, Heidelerg.

    Google Scholar 

  • Ekerot, C.-F., and Larson, B., 1981, Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp. Brain Res. 38:163–172.

    Google Scholar 

  • Ekerot, C.F., and Oscarsson, O., 1981, Prolonged depolarization elicited in Purkinje cell dendrites by climbing fibre impulses in the cat. J. Physiol. 318:207–221.

    PubMed  CAS  Google Scholar 

  • Epema, A.H., Guldemond, J.M., and Voogd, J., 1985, Reciprocal connections between the vestibular nuclei and the caudal vermis in the rabbit. Neurosci. Letters. 57:273–278.

    Article  CAS  Google Scholar 

  • Gerrits, N.M., Epema, A.H., and Voogd, J. 1984, The mossy fiber projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neuroscience 11:627–644.

    Article  PubMed  CAS  Google Scholar 

  • Gerrits, N.M., and Voogd, J., 1978, The projection of the nucleus reticularis tegmenti pontis and the nucleus raphe pontis to the cerebellum in the cat. J. Anat. 127:203–204.

    Google Scholar 

  • Gerrits, N.M., and Voogd, J., 1980, The pontine mossy fiber projection to the cerebellar flocculus in the cat. Neurosci. Letters Suppl. 5: S440.

    Google Scholar 

  • Gerrits, N.M., and Voogd, J., 1982, The climbing fiber projection to the flocculus and adjacent paraflocculus in the cat. Neuroscience 7: 2971–2991.

    Article  PubMed  CAS  Google Scholar 

  • Gerrits, N.M., and Voogd, J., 1986, The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brainstem. Exp. Brain Res. 62:29–45.

    Article  PubMed  CAS  Google Scholar 

  • Gerrits, N.M., Voogd, J., and Magras, I.N., 1985a, Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Res. 332:325–336.

    Article  PubMed  CAS  Google Scholar 

  • Gerrits, N.M., Voogd, J., and Magras, I.N., 1985b, Vestibular nuclear efferents to the nucleus raphe pontis, the nucleus reticularis tegmenti pontis and the nuclei pontis in the cat. Neurosci. Letters 54:357–362.

    CAS  Google Scholar 

  • Gerrits, N.M., Voogd, J., and Nas, W.S.C., 1985c, Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp. Brain Res. 57:239–255.

    Article  PubMed  CAS  Google Scholar 

  • Gerrits, N.M., Willemse-V.D. Geest, L., and Kornet, M., 1984, Some observations on the cerebellopontine projection in the cat - with a hypothesis to explain species differences. Neurosci. Letters 44:65–70.

    Article  CAS  Google Scholar 

  • Gould, B.B., 1980, Organization of afferents from the brainstem nuclei to the cerebellar cortex in the cat. Adv. Anat. Embryol. Cell Biol. 62:1–79.

    Article  Google Scholar 

  • Granit, R., and Phillips, C.G., 1956, Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J. Physiol. 133:520–547.

    PubMed  CAS  Google Scholar 

  • Groenewegen, H.J., and Voogd, J., 1977, The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J. Comp. Neurol. 174:417–488.

    CAS  Google Scholar 

  • Groenewegen, H.J., Voogd, J., and Freeman, S.L., 1979, The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J. Comp. Neurol. 183:551–602.

    CAS  Google Scholar 

  • Holstege, G., and Collewijn, H., 1982, The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J. Comp. Neurol. 209:139–175.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., 1972, Neural design of the cerebellar motor control system. Brain Res. 40:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., 1974, Control mechanisms of the cerebellar motor system. In: The neurosciences, Third study program. Schmidt, F.O., and Worden, F.G. (eds). M.I.T. Press, Massachusetts, pp. 293–303.

    Google Scholar 

  • Ito, M., 1980, Roles of the inferior olive in cerebellar control of vestibular functions. In: The inferior olivary nucleus. J. Courville, D. de Montigny, and Y. Lamarre (eds.). Raven Press, New York, pp. 367–377.

    Google Scholar 

  • Ito, M., 1982a, Eye movements and the cerebellum. In: The cerebellum — New Vistas. Palay, S.L., Chan-Palay, V. (eds.). Springer, New York, pp. 515–529.

    Google Scholar 

  • Ito, M., 1982b, Cerebellar control of the vestibulo-ocular reflex - around the flocculus hypothesis. Ann. Rev. Neurosci. 5:275–296.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., 1984, The cerebellum and neural control. Raven Press, New York.

    Google Scholar 

  • Ito, M., Sakurai, M., and Tongroach, P., 1982, Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324:113–134.

    PubMed  CAS  Google Scholar 

  • Kawamura, K., Brodal, A., and Hoddevik, G.H., 1974, The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental anatomical study in the cat. Exp. Brain Res. 19:1–19.

    CAS  Google Scholar 

  • Kawamura, K., and Hashikawa, T., 1981, Projections from the pontine nuclei proper and reticular tegmental nucleus onto the cerebellar cortex in the cat. J. Comp. Neurol. 201:395–413.

    Article  PubMed  CAS  Google Scholar 

  • Kohonen, T., 1977, Associative memory. A system-theoretical approach. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Korte, G.E., and Mugnaini, E., 1979, The cerebellar projection of the vestibular nerve in the cat. J. Comp. Neurol. 184:265–278.

    Article  PubMed  CAS  Google Scholar 

  • Kotchabhakdi, N., Hoddevik, G.H., and Walberg, F., 1978, Cerebellar afferent projections from the perihypoglossal nuclei: an experimental study with the method of retrograde transport of horseradish peroxidase. Exp. Brain Res. 31:13–29.

    PubMed  CAS  Google Scholar 

  • Künzle H., 1975, Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Exp. Brain Res. 22:255–266.

    Article  PubMed  Google Scholar 

  • Llinas, R., 1982, General discussion: Radial connectivity in the cerebellar cortex: A novel view regarding the functional organization of the molecular layer. In: The cerebellum* New Vistas. Palay, S.L., and Chan-Palay, V. (eds). Exp. Brain Res. Suppl. 6:189–194.

    Google Scholar 

  • Marr, D., 1969, A theory of cerebellar cortex. J. Physiol. 202:437–470.

    PubMed  CAS  Google Scholar 

  • McCrea, R.A., Baker, R., and Delgado-Garcia, J., 1979, Afferent and efferent organization of the prepositus hypoglossi nucleus. In: Progress in Brain Research, Vol. 50, Reflex control of posture and movement. Granit, R., and Pompeiano, O. (eds). Elsevier, Amsterdam, pp. 653–665

    Google Scholar 

  • Miller, S., and.Oscarsson, 0, 1970, Termination and functional organization of spinoolivocerebellar paths. In: The cerebellum in health and desease. Fields, W.S., and Willis, W.D. (eds). W.H. Green Inc., St. Louis, pp. 172–200.

    Google Scholar 

  • Mugnaini, E., 1972, The histology and cytology of the cerebellar cortex. In: The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. Larsell, O., and Jansen, J. (eds). University of Minnesota Press, Minneapolis, pp. 201–264.

    Google Scholar 

  • Nas, W.S.C., Gerrits, N.M., and Voogd, J., 1981, The cuneocerebellar projection in the cat. Acta Morphol. Neerl-Scand. 19:95–96.

    Google Scholar 

  • Palay, S.L., and Chan-Palay, V., 1974, Cerebellar Cortex. Springer, New York, Heidelberg, Berlin.

    Google Scholar 

  • Pompeiano, O., Mergner, T., and Corvaja, N., 1978, Commissural, perihypo- glossal and reticular afferent projections to the vestibular nuclei in the cat. An experimental anatomical study with the method of the retrograde transport of horseradish peroxidase. Archs. Ital. Biol. 116:130–172.

    CAS  Google Scholar 

  • Robinson, D.A., 1972, Vestibular and optokinetic symbiosis: an example of explaining by modeling. In: Control of gaze by brain stem neurons. Developments in neuroscience, Vol. 1. Baker, R., and Berthoz, A. (eds). Elsevier, Amsterdam, pp. 49–58.

    Google Scholar 

  • Robinson, D.A., 1981, The use of control system analysis in the neurophysiology of eye movements. Ann. Rev. Neurosci. 4:463–503.

    Article  PubMed  CAS  Google Scholar 

  • Rovano, J., and Hyvarinen, J., 1976, A noiseless model of associative memory based on the cortical structure and on the effect of the state of consciousness. Exp. Brain Research Suppl. 1:484–489.

    Google Scholar 

  • Russchen, F.T., Groenewegen, H.J., and Voogd, J., 1976, Reticulocerebellar fibers in the cat. An autoradiographic study. Acta Morphol. Neerl- Scand. 14:245–246.

    CAS  Google Scholar 

  • Scheibel, A.B., 1977, Sagittal organization of mossy fiber terminal systems in the cerebellum of the rat. Exp. Neurol. 57:1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Schild, R.F., 1980, Length of the parallel fibres in the rat cerebellar cortex. J. Physiol. 303:25P.

    Google Scholar 

  • Simpson, J.I., Graf, W., and Leonard, C., 1981, The coordinate system of visual climbing fibers to the flocculus. In: Progress in oculomotor research. Fuchs, A.W., and Becker, W. (eds). Elsevier, Amsterdam, pp. 475–484.

    Google Scholar 

  • Somana, R., and Walberg, F., 1978, Cerebellar afferents from the paramedian reticular nucleus studies with retrograde transport of horseradish peroxidase. Anat. Embryol. 154:353–368.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, T., and Maekawa, K., 1980, Bilateral visual inputs to the dorsal cap of inferior olive: differential localization and inhibitory interactions. Exp. Brain Res. 39:461–471.

    Article  PubMed  CAS  Google Scholar 

  • Thach, W.T., 1968, Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J. Neurophysiol. 31:785–797.

    PubMed  CAS  Google Scholar 

  • Voogd, J., 1964, The cerebellum of the cat. Structure and fiber connections. Thesis, van Gorkum, Assen

    Google Scholar 

  • Voogd, J., Broere, G., and van Rossum, J., 1969, The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with other afferent fibre systems. Psychiat. Neurol. Neurochir. 72:137–151.

    PubMed  CAS  Google Scholar 

  • Walberg, F., 1982, The vestibulo- and reticulocerebellar projection in the cat as studies with horseradish peroxidase as a retrograde tracer. In: The cerebellum - New Vistas. Palay, S.L., and Chan-Palay, V. (eds). Springer, New York, pp. 477–500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Gerrits, N.M. (1987). Afferent Control of the Cerebellum. An Hypothesis to Explain the Differences in the Mediolateral Distribution of Mossy Fibre Terminals in the Cerebellar Cortex. In: Glickstein, M., Yeo, C., Stein, J. (eds) Cerebellum and Neuronal Plasticity. NATO ASI Series, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0965-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0965-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8268-6

  • Online ISBN: 978-1-4613-0965-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics