Positron- (and Electron-) Alkali Atom Total Scattering Measurements

  • T. S. Stein
  • M. S. Dababneh
  • W. E. Kauppila
  • C. K. Kwan
  • Y. J. Wan
Part of the NATO ASI Series book series (NSSB, volume 169)


From the outset of scattering experiments with low energy positron beams, there has been a natural tendency to make comparisons between the scattering of positrons and electrons by the same target atoms and molecules. Since positrons, being the antiparticles of electrons, have the same magnitudes for the mass, charge, and spin as the electron, but have the opposite sign of charge, comparison measurements of the scattering of positrons and electrons by atoms and molecules can reveal interesting differences and similarities that arise from the basic interactions which contribute to scattering. The exchange interaction contributes to electron scattering (due to the indistinguishability of the projectile and electrons in the target atoms) but does not play a role in positron scattering. The static interaction (associated with the interaction of the projectile with the Coulomb field of the undistorted atom) is attractive for the electron and repulsive for the positron, while the polarization interaction (resulting from the distortion of the atom by the charged projectile) is attractive for both projectiles. The net effect of the static and polarization interactions is that they add to each other in electron scattering whereas they tend to cancel each other in positron scattering. In general, this results in smaller total scattering cross sections (QT’s) for positrons than for electrons at low energies.


Potential Curf Alkali Atom Projectile Energy Alkali Metal Atom Positron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.S.W. Massey, Phys. Today 29 (3): 42 (1976).CrossRefGoogle Scholar
  2. 2.
    W.E. Kauppila, T.S. Stein, J.H. Smart, M.S. Dababneh, Y.K. Ho, J.P. Downing, and V. Pol, Phys. Rev. A 24: 725 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    W.E. Kauppila and T.S. Stein, Can. J. Phys. 60: 471 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    K.R. Hoffman, M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, V. Pol, J.H. Smart, and T.S. Stein, Phys. Rev. A 25: 1393 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    O. Sueoka, S. Mori, and Y. Katayama, J. Phys. B 19: L373 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    T.S. Stein and W.E. Kauppila, in: Electronic and Atomic Collisions, D.C. Lorents, W.E. Meyerhof, and J.R. Peterson, eds. ( North-Holland, Amsterdam, 1986 ), pp. 105–123.Google Scholar
  7. 7.
    D.P. Dewangen and H.R.J. Walters, J. Phys. B 10: 637 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    T.S. Stein, R.D. Gomez, Y.-F. Hsieh, W.E. Kauppila, C.K. Kwan, and Y.J. Wan, Phys. Rev. Lett. 55: 488 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    B.H. Bransden and M.R.C. McDowell, Phys. Rep. 46: 249 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    B. Shirinzadeh and C.C. Wang, Appl. Opt. 22: 3265 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    R.E. Honig, RCA Rev. 18: 195 (1957).Google Scholar
  12. 12.
    C.K. Kwan, M.S. Dababneh, W.E. Kauppila, T.S. Stein, and Y.J. Wan, to be submitted for publication.Google Scholar
  13. 13.
    R.B. Brode, Phys. Rev. 34: 673 (1929).ADSCrossRefGoogle Scholar
  14. 14.
    A. Kasdan, T.M. Miller, and B. Bederson, Phys. Rev. A 8: 1562 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    P.J. Visconti, J.A. Slevin, and K. Rubin, Phys. Rev. A 3: 1310 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    L. Vuskovic and S.K. Srivastava, J. Phys. B 13: 4849 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    S.K. Srivastava and L. Vuskovic, J. Phys. B 13: 2633 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    J.O. Phelps, J.E. Solomon, D.F. Korff, C.C. Lin, and E.T.P. Lee, Phys. Rev. A 20: 1418 (1979).CrossRefGoogle Scholar
  19. 19.
    J.0. Phelps and C.C. Lin, Phys. Rev. A 24: 1299 (1981).CrossRefGoogle Scholar
  20. 20.
    H.R.J. Walters, J. Phys. B 9: 227 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    T.T. Gien, Phys. Rev. A 35: 2026 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    G. Bordonaro, G. Ferrante, M. Zarcone, and P. Cavaliere, Nuovo Cimento Soc. Ital. Fis. 35 B: 349 (1976).Google Scholar
  23. 23.
    S. Guha and P. Mandal, J. Phys. B 13: 1919 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    S.P. Khare, in: Positron (Electron)-Gas Scattering, W.E. Kauppila, T.S. Stein, and J.M. Wadehra, eds., ( World Scientific, Singapore, 1986 ), pp. 131–139.Google Scholar
  25. 25.
    Ch.K. Kwan, Y.-F. Hsieh, W.E. Kauppila, Steven J. Smith, T.S. Stein, M.N. Uddin, and M.S. Dababneh, Phys. Rev. Lett. 52: 1417 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    H.R.J. Walters, Physics Reports 116: 1 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    M. Inokuti and M.R.C. McDowell, J. Phys. B 7: 2382 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    D.P. Dewangen, J. Phys. B 13: L595 (1980).ADSCrossRefGoogle Scholar
  29. 29.
    F.W. Byron, Jr, C.J. Joachain, and R.M. Potvliege, J. Phys. B 15: 3915 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. S. Stein
    • 1
  • M. S. Dababneh
    • 1
  • W. E. Kauppila
    • 1
  • C. K. Kwan
    • 1
  • Y. J. Wan
    • 1
  1. 1.Department of Physics and AstronomyWayne State UniversityDetroitUSA

Personalised recommendations