Skip to main content

The High Brightness Beam at Brandeis

  • Chapter
Atomic Physics with Positrons

Part of the book series: NATO ASI Series ((NSSB,volume 169))

Abstract

At the first workshop in this series, York University — 1981, the “brightness enhancement” proposal1 which was about a year old at the time was referred to as an “ambitious method” of increasing the brightnessper-volt RV of a slow positron beam.2 Today, however, there are several groups actively pursuing or actually using brightness enhancement in their research. This talk will deal mainly with the brightness enhanced beam at Brandeis since it is a particularly high performance beam and uses well documented optics. The latter feature is important since the lack of well documented electrostatic optics for slow positron beams, in particular the immersion lens gun, has often inhibited the use of electrostatic transport in favor of the more intuitively simple, but generally more restrictive, magnetically guided beam. Equally important have been the improvements due to single crystal metal moderators in the planar back-scattering geometry3 over the large transverse energy spreads of parallel vane moderators.4 A large transverse energy component ET (perpendicular to the initial beam direction) can be as injurious to the focussability of the beam as it is to the predictability of the positron trajectories through the system. In addition to briefly reviewing the design and operation of the Brandeis beam, some results will be presented in the context of the current diffraction and microbeam experiments for which the beam is presently being used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Mills, Jr., Appl. Phys.

    Google Scholar 

  2. K. F. Canter and A. P. Mills, Jr. Can. J. Phys. 60:551 (1983).

    Article  ADS  Google Scholar 

  3. A.Vehanen, K. G. Lynn, P.J. Schultz, and M. Mldrup, Appl. Phys. A32:163 (1983).

    ADS  Google Scholar 

  4. J. M. Dale, L. D. Hulett, and S. Pendyala, Surf. Interface Anal. 2: 199 (1980).

    Article  Google Scholar 

  5. K. F. Canter, T. Horsky, P. H. Lippel, W. S. Crane, and A. P. Mills, Jr., “Development of High Brightness Slow Positron Beams,” in Positron (Electron)-Gas Scattering, W. E. Kauppila, T. S. Stein, and J. M. Wadehra, eds., World Scientific Press, Singapore, p. 202, 1986.

    Google Scholar 

  6. K. F. Canter, P. H. Lippel, W. S. Crane, and A. P. Mills, Jr., “Modified Soa Immersion Lens Positron Gun,” in Positrons in Solids, Surfaces and Atoms, A. P. Mills, Jr., W. S. Crane, and K. F. Canter, eds., World Scientific Press, Singapore, p. 199, 1986.

    Google Scholar 

  7. K. F. Canter, “Low Energy Positron and Positronium Diffraction,” in Positron Annihilation in Gases, J. W. Humberston and M. R. C. McDowell, eds., Plenum Press, NY, p. 219, 1986.

    Google Scholar 

  8. D. A. Fischer, K. G. Lynn, and D. W. Gidley, Phys. Rev. B33: 4479 (1986).

    ADS  Google Scholar 

  9. W. E. Frieze, D. W. Gidley, and K. G. Lynn, Phys. Rev. B31: 5628 (1985).

    Article  ADS  Google Scholar 

  10. P. J. Schultz, E. M. Gullikson, and A. P. Mills, Jr., Phys. Rev. B34: 442 (1986).

    Article  ADS  Google Scholar 

  11. D. M. Chen, K. G. Lynn, R. Pareja, and B. Nielsen, Phys. Rev. B31: 4123 (1985).

    Article  ADS  Google Scholar 

  12. K. F. Canter, “Slow Positron Optics,” in Positrons in Solids, Surfaces and Atoms, A. P. Mills, Jr., W. S. Crane, and K. F. Canter, eds., World Scientific Press, Singapore, p. 102, 1986.

    Google Scholar 

  13. G. R. Brandes, K. F. Canter, T. N. Horsky, P. H. Lippel, and A. P. Mills, Jr., Bull. Am. Phys. Soc. 54, 1944 (1987). A manuscript on the Microbeam is in preparation for submission to Rev. Sci. Inst.

    Google Scholar 

  14. G. M. A. Hyder, M. S. Dababneh, Y.-F. Hsieh, W. E. Kauppila, C. K. Kwan, M. Mandavi-Hezaveh, and T. S. Stein, Phys. Rev. Lett. 57: 2252 (1986).

    Article  ADS  Google Scholar 

  15. T. S. Stein, W. E. Kauppila, V. Pol, J. H. Smart, and G. Jesion, Phys. Rev. A17: 1600 (1978).

    Article  ADS  Google Scholar 

  16. B. L. Brown, “Creation of Monoenergetic Positronium in a Gas,” in Positron Annihilation, P. C. Jain, R. M. Singru, and K. P. Gopinathan, eds., World Scientific Press, Singapore, p. 201, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Canter, K.F., Brandes, G.R., Horsky, T.N., Lippel, P.H., Mills, A.P. (1987). The High Brightness Beam at Brandeis. In: Humberston, J.W., Armour, E.A.G. (eds) Atomic Physics with Positrons. NATO ASI Series, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0963-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0963-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8267-9

  • Online ISBN: 978-1-4613-0963-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics