Skip to main content

Analytical Methods and Quality Control for Trace Metal Determinations: A Critical Review of the State of the Art

  • Chapter
Book cover Biological Monitoring of Toxic Metals

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

Abstract

During the last decade, due to remarkable progress in analytical expertise and instrumentation, many sources of error from sampling to analytical determinations of trace metals have been identified and corrected in recent studies. This has led to a dramatic decrease of concentration levels considered as normal in biological and environmental materials so that instead of mg/kg-contents for many trace elements, μg/kg or even ng/kg levels are accepted today as correct (Nurnberg, 1982; Versieck, 1984, 1985; Versieck and Cornell’s, 1980). Besides a more profound understanding of the whole analytical task, it is obvious from an analyst’s view, that reliable determinations at normal and slightly elevated levels, even in environmental and occupational exposure, demand clear analytical strategies and insights into methodological advantages and limitations. Based on recent research and the author’s experience in trace and ultratrace analysis, this paper summarizes the most important aspects of sound analytical strategies at the planning and preparatory phase. This is followed by a discussion of the state-of-the-art of the most promising routine and reference methods for Al, As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Se, Sn and V regarded as toxicologically and environmentally important metals and metalloids (Friberg et al., 1979, 1985; Merian, 1984) together with a review of their normal (reference) levels in body fluids. Next, approaches for the validation of analytical data will be presented. Finally, some possible future prospects will be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeloju, S.B., Bond, A.M. and Briggs, M.H., 1985, Multielement determination in biological materials by differential pulse voltammetry, Anal. Chem., 57: 1388–1390.

    Google Scholar 

  • Apel, M. and Stoeppler, M., 1983, Speciation of arsenic in urine of occupationally nonexposed persons, in: Proc. Int. Conf. Heavy Metals in the Environment, Heidelberg, Vol. 1., pp. 517–520, CEP Consultants, Edinburgh.

    Google Scholar 

  • Aitio, A. and Jarvisalo, J., 1984, Collection, processing and storage of specimens for biological monitoring of occupational exposure to toxic chemicals, Pure Appl. Chem., 56: 549–566.

    Google Scholar 

  • Barnes, I.L., Murphy, T.I. and Michiels, E.A.I., 1982, Certification of lead concentration in standard reference materials by isotope dilution mass spectrometry, J. Assoc. Off. Anal. Chem., 65: 953–956.

    PubMed  CAS  Google Scholar 

  • Berger, H., Meyberg, F. and Dannecker, W., 1986, Influences of typical environmental matrices on the analysis of trace elements with graphite tube furnace AA, in: “Fortschritte in der atomspektroskopisehen Spurenanalytik,” B. Welz, ed., Verlag Chemie, Weinheim.

    Google Scholar 

  • Bock, R., 1978, “A Handbook of Decomposition Methods in Analytical Chemistry,” Int. Textbook Company, Glasgow.

    Google Scholar 

  • Boumans, P.W.J.M. and Bosveld, M., 1979, A tentative listing of the sensitivities and detection limits of the most sensitive ICP lines as derived from the fitting of experimental data for an argon ICP to the intensities tabulated for the NBS copper arc, Spectrochim. Acta, 34B: 59–72.

    Google Scholar 

  • Brockhaus, A., Freier, I., Ewers, U., Jermann, E. and Dolgner, R., 1983, Levels of cadmium and lead in blood in relation to smoking, sex, occupations and other factors in an adult population of the FRG, Int. Arch. Qccup. Environ. Health, 52: 167–175.

    CAS  Google Scholar 

  • Brown, S.S., 1982, Harmonisation of trace metal analysis in clinical biochemistry: a case study, in. E. Kaiser, F. Gabi, M.M. Müller, M. Bayer, eds., Walter de Gruyter and Co., Berlin-New York.

    Google Scholar 

  • Buchet, J.P., Knepper, E. and Lauwerys, R., 1982, Determination of vanadium in urine by electrothermal atomic absorption spectrometry, Anal. Chim. Acta, 136: 243–248.

    CAS  Google Scholar 

  • Byrne, A.R. and Kosta, L., 1978, Vanadium in foods and in human body fluids and tissues, Sci. Total Environ., 10: 17–30.

    PubMed  CAS  Google Scholar 

  • Byrne, A.R. and Kosta, L., 1979, On the vanadium and tin contents of diet and human blood, Sci. Total Environ., 13: 87–90.

    PubMed  CAS  Google Scholar 

  • Cantle, I.E., ed., 1982, “Atomic Absorption Spectrometry,” Elsevier, Amsterdam-Oxford, New York.

    Google Scholar 

  • Chettle, D., Harvey, T.C., AI Haddad, I.K., Lauwerys, R., Buchet, J.P., Roels, H. and Bernard, A., 1980, In vivo measurement of cadmium in liver and kidney, in: Proc. 2nd Int. Cadmium Conf., Cannes, 1979, pp. 161–168, Metal Bulletin, London.

    Google Scholar 

  • Christofferson, J.0. and Mattsson, S., 1983, Polarized X-rays in XRF-analysis for improved in vivo detectability of cadmium in man, Phys. Med Biol, 28: 1135–1144.

    Google Scholar 

  • Cornell’s, R., 1985, Trace element studies in the biosphere with neutron activation analysis, J. Trace and Microprobe Techniques, 2–4: 237–265.

    Google Scholar 

  • De Bievre, P., 1986, Isotope dilution mass spectrometry, in: “Trace Metal Analysis in Biological Specimens,” M. Stoeppler, ed., Publishing Company of Massachusetts, in press.

    Google Scholar 

  • Ellis, K.J., Vartsky, D., Zanzi, J., Cohn, S.H. and Yasamura, S., 1979, Cadmium: in vivo measurements in smokers and non-smokers, Science, 205: 323–325.

    PubMed  CAS  Google Scholar 

  • Ellis, K.J., 1986, Critical concentration of cadmium in the kidney, in: Proc. 5th Cadmium Conference, San Francisco, in press.

    Google Scholar 

  • Enders, P.W., Geldmachervon Mallinckrodt, M. and Stamm, D., 1985, Ringversuch zur Arsenbestimmung in Urin, J. Forensic Med., Instanbul, 1: 133–140.

    Google Scholar 

  • Ewers, U., Brockhaus, A., Freier, I., Jermann, E. and Dolgner, R., 1986, Exposure to cadmium of the West-German population - Results of biological monitoring studies 1980–1985, in: “Environ. Toxin Reviews, Cadmium,” O. Hutzinger and S.H. Safe, eds., in press, Springer, Berlin-Heidelberg-New York-Tokyo.

    Google Scholar 

  • Falk, H., Hoffmann, E. and Ludke, C.H., 1984, A comparison of furnace atomic nonthermal excitation spectrometry (FANES) with other atomic spectroscopic techniques. Spectrochim. Acta, 398: 383–394.

    Google Scholar 

  • Fassett, J.D. and Kingston, H.M., 1985, Determination of nanogram quantities of vanadium in biological material by isotope dilution thermal ionization mass spectrometry with ion counting detection, Anal. Chem., 57: 2474–2478.

    PubMed  CAS  Google Scholar 

  • Fernandez, F.J., Bohler, W., Beaty, M.M. and Barnett, W., 1981, Correction for high background levels using the Zeeman effect, Atomic Spectrosc., 2: 73–80.

    CAS  Google Scholar 

  • Frech, W, Cedergren, A., Cederberg, C. and Vessman, J., 1982, Evaluation of some critical factors affecting determination of aluminum in blood, plasma or serum by electrothermal atomic absorption spectroscopy, Clin. Chem., 28: 2259–2263.

    PubMed  CAS  Google Scholar 

  • Friberg, L., Nordberg, G.F. and Vouk, V.B., eds., 1979, “Handbook on the Toxicology of Metals,” Elsevier/North Holland Biomedical Press, Amsterdam-New York-Oxford.

    Google Scholar 

  • Friberg, L., Elinder, C.-G., Kjellstrom, T. and Nordberg, G.F., eds., 1985, “Cadmium and Health - A Toxicological and Epidemiological Appraisal,” CRC Press, Boca Raton, USA.

    Google Scholar 

  • Fritzsche, H., Wegscheider, W., Knapp, G. and Ortner, H.M., 1979, A sensitive atomic-absorption spectrometric method for the determination of tin with atomization from impregnated graphite surfaces, Talanta, 26: 219–226.

    PubMed  CAS  Google Scholar 

  • Gray, A.L., 1985, The potential of ICP source mass spectrometry, in: “Instrumentelle Multielement analyses,” B. Sansoni, ed., pp. 227–236, VCH-Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Guidelines for data acquisition and data quality evaluation in environmental chemistry, 1980, Anal.Chem., 52: 2242–2249.

    Google Scholar 

  • Guinn, Y.P. and Hoste, J., 1980, Neutron activation analysis, in: “Elemental Analysis of Biological Materials,”, pp. 105–140, IAEA, Technical Reports Series No. 197.

    Google Scholar 

  • Harnly, J.M., Miller-Ihli, N.J. and 0’Haver, T.C., 1984, Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization, Spectrochim. Acta, 39B: 305–320.

    Google Scholar 

  • Herber, R.F.M., Stoeppler, M. and Tonks, D.B., 1986, Evaluation of IUPAC interlaboratory surveys on cadmium in whole blood and urine, in: Environ. Toxin Reviews, Cadmium’ O. Hutzinger and S.H. Safe, Springer, Berlin-Heidelberg, New York-Tokyo, in press.

    Google Scholar 

  • Heumann, K.G., 1980, Mass spectrometric isotope dilution analysis for accurate determination of elements in environmental samples, Toxicol. Environ. Chem. Rev., 3: 111–129.

    CAS  Google Scholar 

  • Heydorn, K., 1984, “Neutron Activation of Clinical Trace Element Research, Vol. I and II,” CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Hilpert, K. and Waidmann, E., 1986, Multielement determination in environmental samples by mass spectrometric isotope dilution analysis with thermal ionization, Part I: Pine needles, Fresenius Z. Anal. Chem., 325: 141–145.

    CAS  Google Scholar 

  • Ihnat, M., Wolynetz, M., Thomassen, Y. and Verlinden, M., 1986, IUPAC interlaboratory trial on the determination of selenium in lyophil i zed human blood serum, Pure Appl. Chem., in press.

    Google Scholar 

  • Katz, S.A., 1985, Collection and preparation of biological tissues and fluids, Int. Biotechnology Lab., 3: 10–16.

    CAS  Google Scholar 

  • Krivan, V., 1982, Role of radiotracers in the development of trace element analysis, Talanta, 29: 1041–1050.

    PubMed  CAS  Google Scholar 

  • Kurfurst, U., 1984, Untersuchungen über die Schwermetall analyse in Feststoffen mit der direkten Zeeman-Atomabsorptions-Spektroskopie, Diss., Univ. Bremen, Bundesrepublik Deutschland.

    Google Scholar 

  • Kurfurst, U., Grobecker, K.H. and Stoeppler, M., 1984, Homogeneity studies in biological reference and control materials with solid sampling and direct Zeeman AAS, in: “Trace Element-Analytical Chemistry in Medicine and Biology,” P. Bratter and P. Schramel, eds., Vol. 3, pp. 591–602, Walter de Gruyter and Co., Berlin-New York.

    Google Scholar 

  • Langmyhr, F.J. and Wibetoe, G., 1985, Direct analysis of solids by atomic absorption spectrophotometry, Prog. Analyt. Atom. Spectrosc., 8: 193–256.

    CAS  Google Scholar 

  • Lewis, S.A., 0’Haver, T.C. and Harnly, J.M., 1985, Determination of metals at the microgram-per-liter level in blood serum by simultaneous multielement atomic absorption spectrometry with graphite furnace atomization, Anal. Chem., 57: 2–5.

    PubMed  CAS  Google Scholar 

  • Lind, B., Elinder, C.G., Friberg, L., Nilsson, B., Svartengren, M. and Vahter, M., 1986, Quality control in the analyses of lead and cadmium in blood, in: Proc. 2nd International Symposium on Biological Reference Materials: Special Issue of Fresenius Z. Anal. Chem. (in preparation).

    Google Scholar 

  • May, K., Ahmed, R., Reisinger, K., Torres, B. and Stoeppler, M., 1985, Studies on the biochemical cycle of mercury. III. Methylmercury contents in specimens of the environmental specimen bank and other materials, in: Proc. Int. Conf. Heavy Metals in the Environment, Athens, Vol. 2, pp. 513–515, CEP Consultants, Edinburgh.

    Google Scholar 

  • May, K., Stoeppler, M. and Reisinger, K., 1987, Studies in the ratio total mercury/methylmercury in the aquatic food chain, Intern. J. Environ. Anal. Chem., 13: 153–159.

    CAS  Google Scholar 

  • Merian, E., ed., 1984, Metalle in der Umwelt, Verlag Chemie, Weinheim.

    Google Scholar 

  • Michaelis, W., 1985, private communication.

    Google Scholar 

  • Michaelis, W., Prange, A. and Knoth, J., 1985, Applications of TXRF in multielement analysis, in: “Instrumentelle Multielement analyses,” B. Sansoni, ed., pp. 109 - 1M, VCH-Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Mohl, C., Ostapczuk, P. and Stoeppler, M., 1984, Direct determination of lead and cadmium in urine with graphite furnace AAS and the L’vov Platform, in: “Fortschritte in der atomspektroskopisehen Spurenanalytik,” B. Welz, ed., Verlag Chemie, Weinheim.

    Google Scholar 

  • Mousty, F., Omenetto, N., Pietra, R. and Sabbioni, E., 1984, Atomic-absorption spectrometric, neutron-activation and radio-analytical techniques for the determination of trace metals in environmental, biochemical and toxicological research, Part 1. Vandium, Analyst 109: 1451–1454.

    PubMed  CAS  Google Scholar 

  • Muramatsu, Y. and Parr, R.M., 1985, Survey of currently available reference materials for use in connection with the determination of trace elements in biological and environmental materials, IAEA/RL/128.

    Google Scholar 

  • Narres, H.D., Mohl, C. and Stoeppler, M., 1985, Metal analysis in difficult materials with platform furnace Zeeman-atomic absorption spectroscopy. 2. Direct determination of cadmium and lead in milk, Z. Lebensum. Unters. Forsch., 181: 111–116.

    CAS  Google Scholar 

  • Norin, H. and Vahter, M., 1981, A rapid method for the selective analysis of total urinary metabolites of inorganic arsenic, Scand. J. Work Environ. Health, 7: 38–44.

    PubMed  CAS  Google Scholar 

  • Nurnberg, H.W., 1982, Voltammetric trace analysis in ecological chemistry of toxic metals, Pure Appl. Chem., 54: 853–878.

    Google Scholar 

  • Nurnberg, H.W., 1983, Potential and application of voltammetry in the analysis of toxic trace metals in body fluids, in: “Analytical Techniques for Heavy Metals in Biological Fluids,” S. Facchetti, ed., Elsevier, Amsterdam, pp. 209–232.

    Google Scholar 

  • Ostapczuk, P., Yalenta, P., Stoeppler, M. and Nurnberg, H.W., 1984, Voltammetric determination of nickel and cobalt in body fluids and other biological materials, in: “Chemical Toxicology and Clinical Chemistry of Metals,” S.S. Brown and J. Savory, eds., pp. 61–64, Academic Press, London.

    Google Scholar 

  • Ostapczuk, P., Stoeppler, M. and Nurnberg, H.W., 1986, Rapid and reliable voltammetric determination of cadmium in biological and environmental materials, in: “Environ. Toxin Reviews, Cadmium,” O. Hutzinger and S.H. Safe, eJs., in press, Springer, Berlin-Heidelberg-New York-Tokyo.

    Google Scholar 

  • Osteryoung, J.G., Osteryoung, R.A., 1985, Square wave voltammetry, Anal. Chem., 57: 101A–110A.

    CAS  Google Scholar 

  • Parr, R.M., 1986, Reference materials for trace element analysis, in: “Trace Metal Analysis in Biological Specimens,” M. Stoeppler, ed., in press, Publishing Company of Massachusetts.

    Google Scholar 

  • Ping, L., Fuwa, K, and Matsumoto, K., 1985, Sensitivity enhancement by palladium addition in the electrothermal atomic absorption spectrometry of mercury, Anal. Chim. Acta, 171: 297–284.

    Google Scholar 

  • Piwonka, J., Kaiser, G. and Tolg, 1985, Determination of selenium at ng/g nd pg/g levels-by hydride generation atomic absorption spectrometry in biotic materials, Fresenius Z. Anal. Chem., 321: 225 - 234.

    CAS  Google Scholar 

  • Principles of environmental analysis, 1983, Anal. Chem., 55: 2210–2218.

    Google Scholar 

  • Quality assurance in biomedical neutron activation analysis, 1984, IAEA-TECDOC-323.

    Google Scholar 

  • Roels, H.A., Lauwerys, R.R., Buchet, J.-P., Bernard, A., Chettle, D.R., Harvey, T.C. and Al-Haddad, I.K., 1981, In vivo measurement of liver and kidney cadmium in workers exposed to this metal: Its significance with respect to cadmium in blood and urine, Env. Research, 26: 217–240.

    CAS  Google Scholar 

  • Sansoni, B. and Iyengar, V., 1978, Sampling and sample preparation methods for the analysis of trace elements in biological materials, Jul-Spez-13.

    Google Scholar 

  • Sansoni, B., ed., “Instrumentelle Multielement analyses,” section on atomic emission spectroscopy, pp. 311–384, VCH-Yerlagsgesellschaft GmbH, Weinheim.

    Google Scholar 

  • Schaller, K.H., Breininger, M., Schiele, R. and Schierling, 1983, Mercury levels in blood and urine of normal subjects, Arztl. Lab., 29: 325–334.

    CAS  Google Scholar 

  • Schaller, K.H., Schneider, L., Hall, G. and Valentin, H., 1984, Cadmium content in whole blood of inhabitants from various regions of the free state of Bavaria, Zbl. Bakt. Hyg. 7. Abt. Prig. B., 178: 446–463.

    CAS  Google Scholar 

  • Schaller, K.H., Angerer, J., Lehnert, G., Valentin, H. and Weltle, D., 1986, External quality control programs in occupational medicine - Experiences from three round robins in the Federal Republic of Germany, in: Proc. 2nd International Symposium on Biological Reference Materials: Special Issue of Fresenius Z. Anal. Chem., in preparation.

    Google Scholar 

  • Slavin, W., 1984, “Graphite Furnace AAS - A Source Book,” Perkin-Elmer, Norwalk.

    Google Scholar 

  • Slavin, W. and Carnrick, G.R., 1984, The possibility of standardless furnace atomic absorption spectroscopy, Spectrochim. Acta, 39B: 271–282.

    Google Scholar 

  • Slavin, W. and Carnrick, G.R., 1985, A survey of applications of the stabilized temperature platform furnace and Zeeman correction, Atomic Spectroscopy, 6: 157–160.

    CAS  Google Scholar 

  • Spang, G., 1986, Biological monitoring of cadmium workers - in vivo monitoring, in: Proc. 5th Int. Cadmium Conference, San Francisco, 4–6 February 19857 in press.

    Google Scholar 

  • Smith, N.J. and Bullock, D.G., 1986, The UK external quality assessment scheme for blood lead and cadmium analysis, in: Proc. 2nd International Symposium on Biological Reference Materials: Special Issue of Fresenius Z. Anal. Chem., in preparation.

    Google Scholar 

  • Stephens, R., 1980, Zeeman modulated atomic absorption spectroscopy, CRC Crit. Rev. Anal. Chem., 9: 167–195.

    CAS  Google Scholar 

  • Stoeppler, M., Durbeck, H.W., and Nürnberg, H.W., 1982, Environmental specimen banking: A challenge in trace analysis, Talanta, 29: 963–972.

    PubMed  CAS  Google Scholar 

  • Stoeppler, M., 1983a, Atomic absorption spectroscopy - a valuable tool for trace and ultratrace determination of metals and metalloids in biological materials, Spectrochim. Acta, 38B: 1559–1568.

    Google Scholar 

  • Stoeppler, M., 1983b, Analytical aspects of sample collection, sample storage and sample treatment, in: “Trace Element-Analytical Chemistry in Medicine and Biology,” P., Bratter and P. Schramel, eds., Vol. 2, pp. 909–928, Walter de Gruyter, Berlin-New York.

    Google Scholar 

  • Stoeppler, M., 1983c, Strategies for the reliable analysis of heavy metals in man and his environment, in: Proc. Int. Conf. Heavy Metals in Man and His Environment, Heidelberg, pp. 70–77, CEP Consultants, Edinburgh.

    Google Scholar 

  • Stoeppler, M., ed., 1985a, Special issue: Colloquium on “present status and perspectives of the analysis of solid samples by AAS,” Wetzlar, Oct. 1984, Fresenius Z. Anal. Chem., 322, 653–746.

    Google Scholar 

  • Stoeppler, M., 1985b, Bewertung spurenanalytischer Verfahren zur Untersuchung umweltrelevanter Schwermetalle, in: Proc. AGF-Tagung, Wege und Wirkungen von Umweltchemikalien, pp. 12–14, Bonn.

    Google Scholar 

  • Stoeppler, M., 1986a, Recent methodological progress in cadmium analysis, Int. J. Environ. Anal. Chem., 27: 231–239.

    CAS  Google Scholar 

  • Stoeppler, M., ed., 1986b, “Trace Metal Analysis in Biological Specimens,” Publishing Company of Massachusetts, in press.

    Google Scholar 

  • Stoeppler, M. and Apel, M., 1984, Determination of arsenic species in liquid and solid materials from the environment and food and body fluids, Fresenius Z. Anal. Chem., 317: 226–227.

    CAS  Google Scholar 

  • Stoeppler, M. and Nurnberg, W.H., 1984, Analytik von Metallen und ihren ergindungen, in: “Metalle in der Umwelt,” E. Merian, ed., pp. 45–104, Verlag Chemie, Weinheim.

    Google Scholar 

  • Stoeppler, M., Mohl, C., Ostapczuk, P., Goedde, M., Roth, M. and Waidmann, E., 1984, Rapid and reliable determination of elevated blood levels, Fresenius Z. Anal. Chem., 317: 486–490.

    CAS  Google Scholar 

  • Stoeppler, M., Mohl, C., Novak, L. and Gardiner, P.E., 1986, Application of the STPF concept to the determination of AI, Cd and Pb in biological and environmental materials, in: “Fortschritte in der atomspektrometrisehen Spurenanalytik,” B. Welz, ed., Vol. 2, pp. 419–427, VCH-Verlagsges. m. b. H., Weinheim.

    Google Scholar 

  • Stroop, S.D., Helinek, G. and Greene, H.L., 1982, More sensitive flameless atomic absorption analysis of vanadium in tissue and serum, Clin. Chem., 28: 79–82.

    PubMed  CAS  Google Scholar 

  • Subramaman, K.S. and Stoeppler, M., 1986, Cooperative interlaboratory survey of lead in lyophilized bovine whole blood, Fresenius Z. Anal. Chem., 323: 875–879.

    Google Scholar 

  • Sunderman, F.W., Jr., 1980, Analytical biochemistry of nickel, Pure Appl. Chem., 52: 527–544.

    Google Scholar 

  • Sunderman, F.W., Jr., Brown, S.S., Stoeppler, M. and Tonks, D.B., 1982, Interlaboratory evaluation of nickel and cadmium analysis in body fluids, in: IUPAC Collaborative Interlaboratory Studies in Chemical Analysis, H. Egan and T.W. West, eds., pp. 25–35, Pergamon, Oxford-New York.

    Google Scholar 

  • Sunderman, F.W., Jr., Crisostomo, M.C., Reid, M.C., Hopfer, S.M. and Nomoto, 1984, Rapid analysis of nickel in serum and whole blood by electrothermal atomic absorption spectrophotometry, Ann. Clin. Lab. Sci., 14: 232–241.

    PubMed  CAS  Google Scholar 

  • Sunderman, F.W., Jr., Hopfer, S.M., Crisostomo and Stoeppler, M., 1986, Analysis of nickel in urine by electrothermal atomic absorption spectrophotometry, Ann. Clin. Lab. Sci., 16: 219–230.

    PubMed  CAS  Google Scholar 

  • Taylor, J.K., 1981, Quality assurance of chemical measurements, Anal. Chem., 53: 1588A–1596A.

    CAS  Google Scholar 

  • Taylor, J.K., 1983, Validation of analytical methods, Anal. Chem., 600A–608A.

    Google Scholar 

  • Taylor, J.K., 1985, Standard reference materials: Handbook for SRM users, NBS Spec. Publ. 260–100.

    Google Scholar 

  • Tera, O, Schwartzman, D.W., and Watkins, T.R., 1985, Identification of gasoline lead in children’s blood using isotopic analysis, Anal. Environ. Health, 40: 120–123.

    CAS  Google Scholar 

  • Tolg, G., 1984, Selenium analysis in biological materials, in: “Trace Element-Analytical Chemistry in Medicine and Biology,” P. Bratter and P. Schramel, eds., Vol. 3, pp. 95–125, Walter de Gruyter, Berlin-New York.

    Google Scholar 

  • Tsalev, D.L., 1984, Atomic absorption spectrometry in occupational and environmental health practice, Volume II, Determination of individual elements, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Tschopel, P., Kotz, L., Schulz, W., Veber, M. and Tolg, G., 1980, Causes and elimination of systematic errors in the determination of elements in aqueous solutions in the ng/ml range, Fresenius Z. Anal. Chem., 302: 1–14.

    Google Scholar 

  • Turnlund, J.R., 1983, Use of stable isotopes to determine bioavailability of trace elements in humans, Sci. Total Environ., 28: 385–392.

    PubMed  CAS  Google Scholar 

  • Vahter, M., 1982, Assessment of human exposure to lead and cadmium through biological monitoring, Karolinska Institute, Stockholm.

    Google Scholar 

  • Veillon, C., Wolf, W.R. and Guthrie, B.E., 1979, Determination of chromium in biological materials by stable isotope dilution, Anal. Chem., 51: 1022–1024.

    PubMed  CAS  Google Scholar 

  • Veillon, C., Patterson, K.Y. and Bryden, N.A., 1982, Direct determination of chromium in human urine by electrothermal atomic absorption spectrometry, Anal. Chem. Acta, 136: 233–241.

    CAS  Google Scholar 

  • Veillon, C., Lewis, S.A., Patterson, K.Y., Wolf, W.R., Harnly, J.M., Versieck, J., Vanballenberghe, L., Cornell’s, R. and 0’Haver, T.C., 1985, Characterization of a bovine serum reference material for major, minor and trace elements, Anal. Chem., 57: 2106–2109.

    PubMed  CAS  Google Scholar 

  • Versieck, J., 1984, Trace element analysis - A plea for accuracy, Trace Elements in Medicine, 1: 2–12.

    CAS  Google Scholar 

  • Versieck, J., 1985, Trace elements in human body fluids and tissues, CRC Crit. Rev. Clin. Lab. Sci., 22: 97–184.

    CAS  Google Scholar 

  • Versieck, J. and Cornell’s, R., 1980, Normal levels of trace elements in human blood plasma or serum, Anal. Chim. Acta, 116: 217–254.

    CAS  Google Scholar 

  • Versieck, J., Hoste, J., Barbier, F., Seyaert, H., De Rudder, J. and Michels, H., 1978, Determination of chromium and cobalt in human serum by neutron activation analysis, Clin. Chem., 24: 303–308.

    PubMed  CAS  Google Scholar 

  • Versieck, J., Hoste, J., Vanballengerghe, L., De Kesel, A. and Van Renterghem, D., 1986, Collection and preparation of a second generation biological reference material for trace element analysis, in: Proc. 7th Int. Conf. on Modern Trends in Activation Analysis, Copenhagen, June 23–27.

    Google Scholar 

  • Vollkopf, V., Grobenski, Z., Tamm, R. and Welz, B., 1985, Solid sampling of graphite furnace atomic-absorption spectrometry using the cup-in-tube technique, Analyst, 110: 573–577.

    Google Scholar 

  • Waidmann, E., Hilpert, K., Schladot, J.D. and Stoeppler, M., 1984, Determination of cadmium, lead and thallium in materials of the environmental specimen bank using mass spectrometric isotope dilution analysis, Fresenius Z. Anal. Chem., 317: 273–277.

    CAS  Google Scholar 

  • Wang, J., 1982, Stripping analysis of trace metals in human body fluids, J. Electroanal. Chem., 139: 225–232.

    CAS  Google Scholar 

  • Wang, J., 1982, Stripping analysis, VCH-Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Wang, J., Farias, P. A. M. and Mahmoud, J.S., 1985, Stripping voltammetry of aluminum based on adsorptive accumulation of its solochrome violet rs complex at the static mercury drop electrode, Anal. Chem. Acta, 172: 57–64.

    CAS  Google Scholar 

  • Weber, G., 1985, The importance of tin in the environment and its determination at trace levels, Fresenius Z. Anal. Chem., 321: 217–224.

    CAS  Google Scholar 

  • Welz, B., 1983, “Atomic Absorption Spectrometry,” Verlag Chemie, Weinheim.

    Google Scholar 

  • Welz, B. and Verlinden, M., 1986, IUPAC interlaboratory trial-selenium determination in human body fluids using HGAAS, Acta Pharm, et. Toxicolog., in press.

    Google Scholar 

  • WHO, 1984, Global environment monitoring system. Principles and procedures for quality assurance in environmental pollution exposure monitoring, EFP/HEAL/84. 4, World Health Organization, Geneva.

    Google Scholar 

  • Wise, S.A. and Zeisler, R., eds., 1985, “International Review of Environmental Specimen Banking,” NBS Spec. Pub. 706.

    Google Scholar 

  • Wolf, W.R., ed., 1984, “Biological Reference Materials,” John Wiley and Sons, New York-Chichester-Brisbane-Toronto-Singapore.

    Google Scholar 

  • Wolf, W.R., ed., 1987, Proc. 2nd International Symposium on Biological Reference Materials: Special Issue of Fresenius Zeitschr. Anal. Chem., in press.

    Google Scholar 

  • Yasuda, K., Koizumi, H., Ohishi and Nöda, T., 1980, Zeeman effect atomic absorption, Prog. Analyt. Atom. Spectrosc., 3: 299–368.

    CAS  Google Scholar 

  • Yeoman, W.B., Colinet, E. and Griepink, B., 1985, The certification of lead and cadmium in three lyophilized blood materials, CRM Nr. 194, 195, 196, EUR 10380 en.

    Google Scholar 

  • Zeisler, R., Harrison, S.H. and Wise, S., eds., 1983, “The Pilot National Environmental Specimen Bank - Analysis of Human Liver Specimens,” NBS Spec. Publ. 656, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Stoeppler, M. (1988). Analytical Methods and Quality Control for Trace Metal Determinations: A Critical Review of the State of the Art. In: Clarkson, T.W., Friberg, L., Nordberg, G.F., Sager, P.R. (eds) Biological Monitoring of Toxic Metals. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0961-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0961-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42809-8

  • Online ISBN: 978-1-4613-0961-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics