Histochemical Analysis of Hepatocarcinogenesis

  • Hans Jörg Hacker
  • Gabriele Seelmann-Eggebert
  • Fritz Klimek
  • Peter Peschke
  • Rolf F. Kletzien
Conference paper


The hybrid discipline of histochemistry, a borderline field between histology and analytical chemistry or biochemistry is concerned with the identification, localization and quantification of specific substances, reactive groups and sites of enzymatic activities in tissues, cells and cell organelles. Principally metabolic products or enzymes can also be assessed by biochemical analysis nowadays much more efficiently because of the development of new sensitive microchemical techniques. However, the data provided by this approach represent average values and cannot give any information about the true distribution of certain compounds in individual cells and organells. That individual cells differ markedly in their metabolic compartimentation is best illustrated by the kidney tubular system1 and even the liver which looks quite homogeneous uncovers at closer inspection the well known metabolic zonation2. Biochemical analysis becomes really difficult or cannot be performed at all when patholologically altered tissue has to be investigated in which cellular structure as well as metabolic activities may have changed. Because histochemistry offers a wide spectrum of effective methods to surmount such serious problems it turned out to be an indispensable tool for scientists in many fields from botany to histopathology which is frequently applied in toxicology and cancer research.


Pyruvate Kinase Glycogen Storage Disease Glycogen Phosphorylase Semipermeable Membrane G6PDH Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.D. Ross and W.G. Guder, Heterogeneity and compartmentation in the kidney, in: “Metabolic Compartmentation”, H. Sies, ed., Academic Press, London, New York (1982)Google Scholar
  2. 2.
    K. Jungermann, Dynamics of zonal hepatocyte heterogeneity. Perinatal development and adaptive alterations during regeneration after partial hepatectomy, starvation and diabetes, Acta histochem. Suppl.-Band XXXII, S. 89–98 (1986)Google Scholar
  3. 3.
    R.T. Williams, Chemistry of detoxication, in: “Drugs and the Liver”, W. Gerok and K. Sickinger, ed., F.K. Schattauer Verlag, Stuttgart, New York (1975)Google Scholar
  4. 4.
    J.R. Mitchell, D.J. Jollow, Role of metabolic activation in chemical carcinogensis and in drug-induced hepatic injury, in: “Drugs and the Liver”, W. Gerok and K. Sickinger, eds., F.K. Schattauer Verlag, Stuttgart, New York (1975)Google Scholar
  5. 5.
    S.S. Hecht and R. Young, Metabolic hydroxylation of N-Nitrosomorpholine and 3,3,5,5-Tetradeutero-N-Nitrosomorpholine in the F344 rat, Cancer Res. 41: 5039–5043 (1981)PubMedGoogle Scholar
  6. 6.
    P. Bannasch and H.A. Müller, Lichtmikroskopische Untersuchungen über die Wirkung von N-Nitrosomorpholin auf die Leber von Ratte und Maus, Arzneimittel Forsch. 14: 805–814 (1964)Google Scholar
  7. 7.
    H. Druckrey, R. Preussmann, S. Ivankovic, D. Schmähl, Organotrope carcinogene Wirkungen bei 65 verschiedenen N-Nitrosoverbindungen an BD-Ratten, Z. Krebsforsch. 69: 103–201 (1967)PubMedCrossRefGoogle Scholar
  8. 8.
    P. Bannasch, H.J. Hacker, H. Tsuda and H. Zerban, Aberrant regulation of carbohydrate metabolism and metamorphosis during renal carcinogenesis. Adv. Enzyme Reg. 25: 279–296 (1986)CrossRefGoogle Scholar
  9. 9.
    B. Löfberg and H. Tjälve, Tissue specificity of N-Nitrosomorpholine metabolism in Sprague-Dawley rats, Fd. Chem. Toxic. 23: 647–654 (1985)CrossRefGoogle Scholar
  10. 10.
    E.D. Farber and D.S.R. Sarma, Biology of Disease, Hepatocarcinogenesis. A dynamic cellular perspective. Lab. Invest. 56: 4–22 (1987)PubMedGoogle Scholar
  11. 11.
    J. Chayen, L. Bitensky, R.G. Butcher, “Practical Histochemistry”, John Wiley & Sons, London, New York (1973)Google Scholar
  12. 12.
    R.W. Mowry, Contributions of practical carbohydrate histochemistry to the histopathological diagnosis of renal diseases, fungal infections, and some types of cancer, in:. “Histochemistry”, P.J. Stoward and J.M. Polak, ed., John Wiley & Sons, London, New York (1981)Google Scholar
  13. 13.
    A.G.E. Pearse, “Histochemistry”, Vol. 2, Churchill Livingstone, Edinburgh, London, New York (1985)Google Scholar
  14. 14.
    R. Hotchkiss, A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations, Arch. Biochem. 16: 131–141 (1948)PubMedGoogle Scholar
  15. 15.
    R. Roos, The “chessboard” distribution of glycogen in liver. Artifact of fixation or the effect of an enzyme, Histochem. J. 6: 511–521 (1974)PubMedCrossRefGoogle Scholar
  16. 16.
    H.D. Fahimi, Perfusion and immersion fixation of rat liver with glutaraldehyde. Lab. Invest. 5: 736–750 (1967)Google Scholar
  17. 17.
    W. Umrath, Rapid freezing in open cooling baths, Arzneim. Forsch. 25: 450–451 (1975)Google Scholar
  18. 18.
    E.A. Newsholme, B. Crabtree, V.A. Zammit, Use of enzyme activities as indices of maximum rates of fuel utilization, in: “Trends in Enzyme Histochemistry and Cytochemistry”, Ciba Foundation Symposium 73, Excerpta Medica, Amsterdam (1980)Google Scholar
  19. 19.
    H.G. Hers, the control of glycogen metabolism in the liver, Annu. Rev. Biochem. 45: 167–189 (1976)PubMedCrossRefGoogle Scholar
  20. 20.
    R.C. Nordlie and K.A. Sukalski, Multiple forms of type I glycogen storage disease: underlying mechanisms, TIBS 11: 85–88 (1986)Google Scholar
  21. 21.
    G. Weber, Carbohydrate metabolism in cancer cells and the molecular correlation concept, Naturwiss. 55: 418–429 (1968)PubMedCrossRefGoogle Scholar
  22. 22.
    H.J. Hacker, M.A. Moore, D. Mayer and P. Bannasch, Correlative histochemistry of some enzymes of carbohydrate metabolism in preneoplastic and neoplastic lesions in the rat liver. Carcinogenesis 3: 1265–1272 (1982)PubMedCrossRefGoogle Scholar
  23. 23.
    U. Benner, H.J. Hacker and P. Bannasch, Electron microscopical demonstration of glucose-6-phosphatase in native cryostat sections fixed with glutaraldehyde through semipermeable membranes. Histochemistry 65: 41–47 (1979)PubMedCrossRefGoogle Scholar
  24. 24.
    L.A. Lindberg, Lead and some other metals in the histochemical demonstration of liver glycogen phosphorylase activity, J. Histochem. Cytochem. 20: 331–335 (1972)PubMedCrossRefGoogle Scholar
  25. 25.
    H.J. Hacker, Histochemical demonstration of glycogen phosphorylase (EC through the use of semipermeable membranes. Histochemistry 58: 289–296 (1978)PubMedCrossRefGoogle Scholar
  26. 26.
    A.E.F.H. Meijer and G.P. de Vries, Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. IV. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (decarboxylating), Histochemistry 40: 349–359 (1974)PubMedCrossRefGoogle Scholar
  27. 27.
    T.P. Pretlow, R.W. Grane, P.D. Goehring, A.S. Lapinsky and T.G. Pretlow. Examination of enzyme-altered foci with γ-glutamyl transpeptidase, aldehyde dehydrogenase, glucose-6-phosphate dehydrogenase, and other markers in metacrylate-embedded liver. Lab. Invest. 56: 96–100 (1987)PubMedGoogle Scholar
  28. 28.
    G. Seelmann-Eggebert, D. Mayer, D. Mecke and P. Bannasch, Expression and regulation of glycogen phosphorylase in preneoplastic and neoplastic hepatic lesions in rats, Virch. Arch. B 53: 44–51 (1987)CrossRefGoogle Scholar
  29. 29.
    W.D. Kuhlmann, “Immuno Enzyme Techniques in Cytochemistry”, Verlag Chemie, Weinheim (1984)Google Scholar
  30. 30.
    P. Bannasch, H.J. Hacker, F. Klimek and D. Mayer, Hepatocellular glycogenosis and related pattern of enzymatic changes during hepatocarcinogenesis. Adv. Enzyme Reg. 22: 97–121 (1984)CrossRefGoogle Scholar
  31. 31.
    A.C. Nairn, J.A. Detre, J.E. Casnellie and P. Greengard, Serum antibodies that distinguish between the phospho- and dephospho-forms of a phosphoprotein. Nature 299: 734–736 (1982)PubMedCrossRefGoogle Scholar
  32. 32.
    A.B. Frey, D.J. Waxman and G. Kreibich, The structure of Phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4, J. Biol. Chem. 260:15253–15265 (1985)PubMedGoogle Scholar
  33. 33.
    P. Bannasch, H.J. Hacker, F. Klimek and D. Mayer, Hepatocellular glycogenosis and related pattern of enzymatic changes during hepatocarcinogenesis. Adv. Enzyme Reg. 22: 97–121 (1984)CrossRefGoogle Scholar
  34. 34.
    C.G. Hoar. G.W. Nicoll, E. Schiltz, W. Schmitt, D.P. Bloxham, M.F. Byford, B. Dunbar and L.A. Fothergill, Muscle and Liver pyruvate Kinases are closely related; amino acid sequence comparisons, Febs. Lett. 171:Google Scholar
  35. 35.
    P. Bannasch, U. Benner, H.J. Hacker. F. Klimek, D. Mayer, M. Moore and H. Zerban, Cytochemical and biochemical microanalysis of carcinogenesis, Histochem. J. 13: 799–820 (1981)PubMedCrossRefGoogle Scholar
  36. 36.
    M. Reinacher. E. Eigenbrodt, U. Gerbracht, G. Zenk, I. Timmermann-Trosiener, P. Bentley, F. Waechter and R. Schulte-Hermann, Pyruvate kinase isoenzymes in altered foci and carcinoma of rat liver, Carcinogenesis 7: 227–240 (1981)Google Scholar
  37. 37.
    F.W. Rath, Enzymhistochemie maligner Tumoren — Bedeutung für Forschung und diagnostische Praxis, Z. Klin. Med. 41:1045–1048 (1986)Google Scholar
  38. 38.
    M.S. Rao and J.K. Reddy, Peroxysome proliferation and hepatocarcinogenesis, Carcinogenesis 8: 631 (1987)PubMedCrossRefGoogle Scholar
  39. 39.
    S.D. Vesselinovitch, H.J. Hacker and P. Bannasch, Histochemical characterization of focal hepatic lesions induced by single diethylnitrosamine treatment in infant mice, Cancer Res. 45: 2774–2780 (1985)PubMedGoogle Scholar
  40. 40.
    M.B.. Cohen, J.H. Beckstead, L.D. Ferrell and T.S.B. Yen, Enzyme histochemistry of hepatocellular neoplasms, Amer. J. Surg. Pathol. 10: 789–794 (1986)CrossRefGoogle Scholar
  41. 41.
    R.G. Butcher and C.J.F. Van Noorden, Reaction rate studies glucose-6-phosphate dehydrogenase activity in sections of rat liver using 4 tetrazolium salts, Histochem. J. 17: 993 (1985)PubMedCrossRefGoogle Scholar
  42. 42.
    P.J. Stoward, Criteria for validation of quantitative histochemical enzyme techniques, in: “Trends in enzyme histochemistry and cytochemistry”, Excerpta medica, Amsterdam, Oxford, New York (1980)Google Scholar
  43. 43.
    D. Glick, Trends in quantification in histochemistry and cytochemistry, Histochem. J. 13: 227–240 (1981)PubMedCrossRefGoogle Scholar
  44. 44.
    D. Glick, Fifty years with histochemistry and cytochemistry, J. Histochem. Cytochem. 33: 720–728 (1985)PubMedCrossRefGoogle Scholar
  45. 45.
    J.I. Morrell, Symposium on in situ hybridization with nucleotide probes: a histochemical tool, J. Histochem. Cytochem. 34: 25–26 (1986)Google Scholar
  46. 46.
    J.P. Coghlan, P. Aldred, J. Haralambidis, H.D. Niall. J.D. Penschow and G.W. Tregear, Hybridization Histochemistry, Anal. Biochem. 149: 1–28 (1985)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Hans Jörg Hacker
    • 1
  • Gabriele Seelmann-Eggebert
    • 1
  • Fritz Klimek
    • 1
  • Peter Peschke
    • 2
  • Rolf F. Kletzien
    • 3
  1. 1.Institut für Experimentelle PathologieDeutsches KrebsforschungszentrumHeidelbergGermany
  2. 2.Inst. f. NuklearmedizinDeutsches KrebsforschungszentrumHeidelbergGermany
  3. 3.Dep. of BiochemistryWest Virginia Univ.MorgantownUSA

Personalised recommendations