Advertisement

Mechanism of the Inhibition of Liver HepatoCarcinogenesis Promotion by S-Adenosyl-L-Methionine

  • Francesco Feo
  • Renato Garcea
  • Lucia Daino
  • Rosa Pascale
Conference paper

Abstract

The identification and subsequent characterization of preneoplastic lesions in different tissues, in animals subjected to chemical carcinogens and in man, gives rise to a new and attractive outlook in the prevention of cancer development. It might be possible, by modulating the promotion and progression steps of carcinogenesis to inhibit the development of preneoplastic tissue as well as its progression to neoplasia. The disappearance of preneoplastic lesions has been recently obtained after treatment with certain antioxidants, hypolipidemic drugs, dehydroepiandrosterone and some other related hormones1–5.

Keywords

Labelling Index Partial Hepatectomy Hyperplastic Nodule Liver Carcinogenesis Triphasic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Deangelo and C. T. Garrett, Inhibition of development of preneoplastic lesions in the livers of rats fed a weakly carcinogenic environmental contaminant, Cancer Lett. 20:199 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    W. Stäuli, P. Bentley, F. Bieri, E. Frölich, and F. Waechter, Inhibitory effect of nafenopin upon the development of diethylnitrosamine-induced enzyme-altered foci within the rat liver, Carcinogenesis, 5:41 (1984).CrossRefGoogle Scholar
  3. 3.
    M. A. Moore, W. Thamavit, H. Tsuda, K. Sato, A. Ichihara, and N. Ito, Modifying influence of dehydroepiandrosterone on the development of dihydroxy-d-n-propylnitrosamine-initiated lesions in the thyroid, lung and liver of F344 rats, Carcinogenesis 7:311 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Garcea, L. Daino, R. Pascale, S. Frassetto, P. Cozzolino, M. E. Ruggiu, and F. Feo, Inhibition by dehydroepiandrosterone of liver preneoplastic foci formation in rats after initiation-selection in experimental carcinogenesis, Toxicol. Pathol., in press.Google Scholar
  5. 5.
    Y. B. Mikol, K. L. Hoover, D. Creasia, and L. A. Poirier, Hepatocarcinogenesis in rats fed methyl-deficient amino acid-deficient diets, Carcinogenesis 4:16l9 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    A. K. Goshal and E. Farber, The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens, Carcinogenesis 5:1367 (1984).CrossRefGoogle Scholar
  7. 7.
    S. Yokoyama, M. A. Sells, T. V. Reddy, and B. Lombardi, Hepatocarcinogenic and promoting action of a choline-devoid diet in the rat, Cancer Res. 45:2842 (1985).Google Scholar
  8. 8.
    B. Lombardi and H. Shinozuka, Enhancement of 2-acetylaminofluorene liver carcinogenesis in rats fed a choline-devoid diet, Int. J. Cancer 23:565 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    A. E. Rogers, G. Lehnart, and G. Morrison, Influence of dietary content of lipotropes and lipid on aflatoxin B1, N-2-fluorenylacetamide, 1,2-dimethylhydrazine Carcinogenesis in rats, Cancer Res. 40:2802 (1980).Google Scholar
  10. 10.
    N. Shivapurkar and L. A. Poirier, Decreased levels of S-adenosylmethionine in the livers of rats fed phenobarbital and DDT, Carcinogenesis 5:589 (1982).CrossRefGoogle Scholar
  11. 11.
    R. L. P. Adams and R. H. Burdon, “Molecular Biology of DNA Methylation” Springer-Verlag, New York (1985).Google Scholar
  12. 12.
    A. E. Pegg, R. T. Borchardt, and J. K. Coward, Effect of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of mouse transformed fibroblasts, Biochem. J. 194:79 (198l).PubMedGoogle Scholar
  13. 13.
    M. K. Riscoe, P. A. Tower, and A. J. Ferro, Mechanism of action of 5′-methylthioadenosine in S49 cells, Biochem. Pharmacol. 33:3639 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    G. L. Cantoni, The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine, in: “Biochemistry and Biology of DNA Methylation”, G. L. Cantoni and A. Razin, eds., p. 47, Alan R. Liss, Inc., New York (1985).Google Scholar
  15. 15.
    F. Feo, R. Pascale, R. Garcea, L. Daino, L. Pirisi, S. Frassetto, M. E. Ruggiu, D. Di Padova, and G. Stramentinoli, Effect of the variations of S-adenosyl-L-methionine liver content on fat accumulation and ethanol metabolism in ethanol-intoxicated rats, Toxicol. Appl. Pharmacol. 83:331 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    D. B. Solt, A. Medline, and E. Farber, Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for sequential analysis of liver carcinogenesis, Am. J. Pathol. 88:595 (1977).PubMedGoogle Scholar
  17. 17.
    M. Lans, J. de Gerlache, H. S. Taper, V. Préat, and M. B. Roberfroid, Phenobarbital as a promoter in the initiation-selection process of experimental rat hepatocarcinogenesis, Carcinogenesis 2:1283 (1983).Google Scholar
  18. 18.
    E. Farber and H. Ichinose, The prevention of ethionine-induced carcinoma of the liver in rats by methionine, Cancer Res. 18:1209 (1958).PubMedGoogle Scholar
  19. 19.
    Z. Brada, J. Hillova, M. Hill, N. H. Altman, and S. Bulba, Effect of methionine on development of benzopyrene (BP) induced sarcomas, Proc. of AACR, abstr. no 478, Cancer Res. 27:121 (1986).Google Scholar
  20. 20.
    N. Shivapurkar, K. L. Hoover, and L. A. Poirier, Effect of methionine and choline on liver tumor promotion by phenobarbital and DDT in diethyl-nitrosamine-initiated rats, Carcinogenesis 5:547 (1986).CrossRefGoogle Scholar
  21. 21.
    K. Enomoto and E. Farber, Kinetics of phenotypic maturation of remodelling of hyperplastic nodules during liver carcinogenesis, Cancer Res. 42:2330 (1982).PubMedGoogle Scholar
  22. 22.
    R. Schulte-Hermann, J. Schuppler, I. Timmermann-Trosiener, G. Ohde, W. Bursch, and H. Berger, The role of growth of normal and preneoplastic cell populations for tumor promotion in rat liver, Environ. Health Perspect. 50:185 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    M. A. Moore, H-J. Hacker, and P. Bannasch, Phenotypic instability in focal and nodular lesions induced in a short term system in the rat liver, Carcinogenesis, 5:595 (1983).CrossRefGoogle Scholar
  24. 24.
    W. Bursch, B. Lauer, I. Timmermann-Trosiener, G. Bartel, J. Schuppler, and R. Schulte-Hermann, Controlled death (Apoptosis) of normal and putative preneoplastic cell in rat liver following withdrawal of tumor promoters. Carcinogenesis 5:453 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Jänne, H. Pösö, and A. Raina, Polyamines in rapid growth and cancer, Biochim. Biophys. Acta 473:241 (1978).PubMedGoogle Scholar
  26. 26.
    O. Heby, Role of polyamines in the control of cell proliferation and differentiation, Differentiation 19:1 (198l).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Scalabrino and M. A. Ferioli, Polyamines in mammalian tumors. Part I, Adv. Cancer Res. 35:151 (l82).Google Scholar
  28. 28.
    G. Scalabrino and M. A. Ferioli, Polyamines in mammalian tumors. Part II, Adv. Cancer Res. 36:1 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Thrower and M. G. Ord, Hormonal control of liver regeneration, Biochem. J. 144:361 (1974).PubMedGoogle Scholar
  30. 30.
    O. Heby, A. Anheus, M. Linden, and S. Oresson, Tumor cell proliferation as affected by changes in intracellular and extracellular polyamine levels, Adv. Poly am. Res 3:357 (1981).Google Scholar
  31. 31.
    T. G. O’Brien, R. C. Simsiman, and R. K. Boutwell, Induction of the polyamine biosynthetic enzymes in mouse epidermis and their specificity for tumor promotion, Cancer Res. 35:2426 (1975).PubMedGoogle Scholar
  32. 32.
    G. Scalabrino, H. Pösö, E. Holttä, P. Hannonen, A. Kallio, and J. Jänne, Synthesis and accumulation of polyamines in rat liver during chemical carcinogenesis, Int. J. Cancer 21:239 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Yamagi, K. Sasaki, and N. Yamamoto, Induction by phenobarbital of ornithine decarboxylase activity in rat liver after initiation with diethylnitrosamine, Cancer Lett. 12:87 (1981).CrossRefGoogle Scholar
  34. 34.
    J. W. Olson and D. H. Russell, Prolonged ornithine decarboxylase induction in regenerating carcinogen-treated liver, Cancer Res. 40:4373 (1980).PubMedGoogle Scholar
  35. 35.
    F. Feo, R. Garcea, L. Daino, R. Pascale, L. Pirisi, S. Frassetto, and M. E. Ruggiu, Early stimulation of polyamine biosynthesis during promotion of diethylnitrosamine-induced rat liver carcinogenesis. The effects of variations of the S-adenosyl-L-methionine cellular pool, Carcinogenesis, 6:1713 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    R. Garcea, R. Pascale, L. Daino, S. Frassetto, P. Cozzolino, M. E. Ruggiu, M. G. Vannini, L. Gaspa, and F. Feo, Variations of ornithine decarboxylase activity and S-adenosyl-L-methionine and 51-methylthioadenosine contents during the development of diethylnitrosamine-induced liver hyperplastic nodules and hepatocellular carcinoma, Carcinogenesis, in press.Google Scholar
  37. 37.
    Y. B. Mikol and L. A. Poirier, An inverse relationship between hepatic ornithine decarboxylase and S-adenosylmethionine in the rats, Cancer Lett. 13:195 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    K. Oden and S. Clarke, S-adenosyl-L-methionine synthetase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels, Biochemistry 22:2978 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    C. Matsumoto, Y. Suma, and K. Tsukada, Changes in the activities of S-adenosylmethionine synthetase isozymes from rat liver with dietary methionine, J. Biochem. 25:287 (1984).Google Scholar
  40. 40.
    R. L. Pajula and A. Raina, Methylthioadenosine, a potent inhibitor of spermine synthase from bovine brain, FEBS Lett. 99:343 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    A. J. Ferro, A. A. Vandenbarki, and M. R. MacDonald, Inactivation of S-adenosylhomocysteine hydrolase by 5′-deoxy-5′-methylthioadenosine, Biochem. Biophys. Res. Commun. 100:523 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    J. A. Lautenberg and S. Linn, The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase, J. Biol. Chem. 247:6176 (1972).Google Scholar
  43. 43.
    H. G. Williams-Ashman, A. E. Pegg, and D. H. Lockwood, Mechanisms of the regulation of polyamine and putrescine biosynthesis in male genital glands and other tissues of mammals, Adv. Enzyme Regul. 7:292 (1972).Google Scholar
  44. 44.
    R. Schulte-Hermann, Tumor promotion in the liver, Arch. Toxicol. 57:147 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Aström, J. W. DePierre, and L. Eriksson, Characterization of drug-metabolizing systems in hyperplastic nodules from the livers of rats receiving 2-acetylaminofluorene in their diet, Carcinogenesis 4:577 (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Schulte-Hermann, I. Timmermann-Trosiener, and J. Schuppler, Aberrant expression of adaptation to phenobarbital may cause selective growth of foci of altered cells in rat liver, in: “Models, Mechanisms and Etiology of Tumor Promotion”, M. Börzsönyi, K. Lapis, N. E. Day and Y. Yamasaki, eds., IARC Scientific Publlication 56:67 (1984).Google Scholar
  47. 47.
    F. Feo, R. A. Canuto, R. Garcea, O. Brossa, and G. C. Caselli, Phenobarbital stimulation of cytochrome P-450 and aminopyrine N-demethylase in hyperplastic liver nodules during DL-ethionine carcinogenesis, Cancer Lett. 5:25 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Francesco Feo
    • 1
  • Renato Garcea
    • 1
  • Lucia Daino
    • 1
  • Rosa Pascale
    • 1
  1. 1.Istituto di Patologia generale dell’Università di SassariSassariItaly

Personalised recommendations