Skip to main content

Cholesterol Metabolism During Cell Proliferation

  • Conference paper
Experimental Hepatocarcinogenesis
  • 34 Accesses

Abstract

Cholesterol metabolism has been extensively studied for its role in cell replication and growth (1). Besides the fact that cholesterol is a constitutive physiological compound of plasma membranes, it is believed that intermediate molecules of its metabolism are directly implied with DNA synthesis (2). Several experimental reports support these assumptions. The following general considerations can be recalled:

  1. 1.

    A “continuous” flow of cholesterol synthesis is needed during cell proliferation in order to supply the cholesterol required for biogenesis of new membranes that must accompany cell growth (3).

  2. 2.

    The pioneering work of Siperstein showed the loss of feedback inhibition by cholesterol on hydroxy-methyl-glutaryl coenzyme A (HMGCoA) reductase in tumoral tissue (4).

  3. 3.

    In the last decade different Authors have repeatedly given “in vitro” experimental evidence that isoprenoid units are directly correlated with DNA synthesis (5–7).

  4. 4.

    Cholesterol synthesis and correlated metabolic pathways (hexose monophosphate (HMP) shunt, cholesterol esterification, lipoprotein metabolism) are synchronized with DNA synthesis and with the extent of parenchymal cell proliferation (8–12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.S. Coleman and B.B. Lavietes, Membrane cholesterol and tumori-genesis, C.R.C. Critical Rev. Biochem. 11:341 (1981).

    CAS  Google Scholar 

  2. M.D. Siperstein, Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth, J.Lipid Res. 5:3 (1964).

    Google Scholar 

  3. R.B. Clayton, The utilization of sterols by insects, J.Lipid Res. 5:3 (1964).

    CAS  Google Scholar 

  4. M.D. Siperstein and M.V. Fagan, Deletion of the cholesterol negative feedback system in liver tumors, Cancer Res. 24:1108 (1964).

    PubMed  CAS  Google Scholar 

  5. M.S. Brown and J.L. Goldstein, Multivalent feedback regulation of HMGCoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth, J.Lipid Res. 21:505 (1980).

    PubMed  CAS  Google Scholar 

  6. A.J.R. Habenicht, J.A. Glomset, and R. Ross, Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet growth factor, J.Biol. Chem. 255:5134 (1980).

    PubMed  CAS  Google Scholar 

  7. V. Quesney-Huneeus, M.A. Galik, M.D. Siperstein, S.K. Erickson, T.A. Spencer, and J.A. Nelson, The dual role of mevalonate in the cell cycle, J.Biol.Chem. 258:378 (1983).

    PubMed  CAS  Google Scholar 

  8. S. Dess, C. Chiodino, B. Batetta, A.M. Fadda, C. Anchisi, and P.Pani, Hepatic glucose-6-phosphate dehydrogenase, cholesterogenesis, and serum lipoproteins in liver regeneration after partial hepatectomy, Exp.Mol.Pathol. 44:169 (1986).

    Article  Google Scholar 

  9. S. Dessì, B. Batetta, E. Laconi, C. Ennas, and P. Pani, Hepatic cholesterol in lead nitrate induced liver hyperplasia, Chem.Biol. Interact. 48:271 (1984).

    Article  PubMed  Google Scholar 

  10. P. Pani, S. Dessì, K.N. Rao, B. Batetta, and E. Laconi, Changes in serum and hepatic cholesterol in lead induced liver hyperplasia, Toxicol.Pathol. 12:162 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. S. Dessì, C. Chiodino, B. Batetta, E. Laconi, C. Ennas, and P. Pani, Hexose monophosphate shunt and cholesterol synthesis in the diabetic and fasting states, Exp.Mol.Pathol. 43:177 (1985).

    Article  PubMed  Google Scholar 

  12. K.N. Rao, S. Kottapally, and H. Shinozuka, Acinar cell carcinoma of rat pancreas: mechanisms of deregulation of cholesterol metabolism, Toxicol.Pathol. 12:62 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. S. Dessì, C. Chiodino, B. Batetta, M. Armeni, M.F. Mulas, and P. Pani, Comparative effects of insulin and refeeding on DNA synthesis, HMP shunt and cholesterogenesis in diabetic and fasted rats, Pathology submitted for publication.

    Google Scholar 

  14. E. Cayama, H. Tsuda, D.S.R. Sarma, and E. Färber, Initiation of chemical carcinogenesis requires cell proliferation, Nature 275:60 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. G.M. Ledda-Columbano, A. Columbano, S. Dessì, P. Coni, C. Chiodino, and P. Pani, Enhancement of cholesterol synthesis and pentose phosphate pathway activity in proliferating hepatocyte nodules, Carcinogenesis 6:1371 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. G.M. Ledda-Columbano, A. Columbano, S. Dessì, P. Coni, C. Chiodino, G. Faa, and P. Pani, Hexose monophosphate shunt and cholesterogenesis in lead-induced kidney hyperplasia, Chem.Biol.Interact. in press (1987).

    Google Scholar 

  17. K.N. Rao, S. Kottapally, E.D. Eskander, H. Shinozuka, S. Dessl, and P. Pani, Acinar cell carcinoma of rat pancreas: regulation of cholesterol esterification, Br.J.Cancer 54:305 (1986).

    Article  PubMed  Google Scholar 

  18. M.S. Brown, J.R. Faust, J.L. Goldstein, I. Kaneko, and A. Endo, Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase, J.Biol.Chem. 253:1171 (1978).

    Google Scholar 

  19. M. Astruc, M. Laporte, C. Tabacik, and A. Crastes de Paulet, Effect of oxygenated sterols on 3-hydroxy-3-methylglutaryl coenzyme A reductase and DNA synthesis in phytohemagglutinin-stimulated human lymphocytes, Biochem.Biophys.Res.Commun. 85:691 (1978).

    Article  PubMed  CAS  Google Scholar 

  20. S. Yachnin, Mevalonic acid as an initiator of cell growth. Studies using human lymphocytes and inhibitors of endogenous mevalonate biosynthesis, Oncodevelop.Biol.Med. 3:111 (1982).

    CAS  Google Scholar 

  21. W.R. Bezwoda, D.P. Derman, N. See, and N. Mansoor, Relative value of oestrogen receptor assay, lactoferrin content, and glucose-6-phosphate dehydrogenase activity as prognostic indicators in primary breast cancer, Oncology 42:7 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. A.W. Evans, N.W. Johnson, and R.G. Butcher, A quantitative biochemical study of the glucose-6-phosphate dehydrogenase activity in premalignant and malignant lesions of human oral mucosa, Histochem.J. 15:483 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. E.J. Zampella, E.L. Bradley, and T.G. Pretlow, Glucose-6-phosphate dehydrogenase: a possible clinical indicator for prostatic carcinoma, Cancer 49:384 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Pani, P., Dessì, S., Batetta, B. (1988). Cholesterol Metabolism During Cell Proliferation. In: Roberfroid, M.B., Préat, V. (eds) Experimental Hepatocarcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0957-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0957-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8264-8

  • Online ISBN: 978-1-4613-0957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics