A Study of the Activities of Carbohydrate-Metabolizing Enzymes and the Levels of Carbohydrate Metabolites and Amino Acids in Normal Liver and in Hepatocellular Carcinoma

  • U. Gerbracht
  • E. Roth
  • K. Becker
  • M. Reinacher
  • E. Eigenbrodt


Primary hepatocellular carcinoma was induced by treatment with the initiator N’nitrosomorpholine followed by the promoting agents phenobarbital or Clofibrate. In those tumors, the activities of pyruvate kinase, fructose 1,6-bisphosphatase and lactate dehydrogenase were reduced. A reduction in the activities of pyruvate kinase and fructose 1,6-bisphosphatase along with an increase in malic enzyme activity were observed in the host livers of tumor-bearing rats and in livers of rats pretreated with the promoter alone, suggesting that these changes may be a general effect of the xenobiotic which serves as the tumor promoter in chemical-induced hepatocarcinogenesis. Such changes were independent of the promoter used, whereas alterations in the enzymes gamma-glutamyltransferase and glucose 6-phosphate dehydrogenase were dependent on the promoter type. Enolase activity was not affected by any treatment. In a second experiment, relevant carbohydrate metabolites, amino acid levels and selected carbohydrate metabolizing enzyme activities were determined in hepatic tumors from rats which had received phenobarbital as the promoting drug. Serine dehydratase and glucose 6-phosphatase were strongly depressed when compared to host livers and livers from rats treated only with N’nitrosomorpholine. On the other hand, glucokinase activity was reduced in tumors as well as in host livers of tumor-bearing rats, while phosphofructokinase and 6-phosphogluconate dehydrogenase activities were unaltered in all livers. The decrease in pyruvate kinase, fructose 1,6-bisphosphatase, serine dehydratase and the subsequent decrease in pyruvate and alanine in hepatocellular carcinoma were positively correlated with an increase in fructose 1,6-bisphosphate and glycine.


Pyruvate Kinase Malic Enzyme Primary Hepatocellular Carcinoma Host Liver Pyruvate Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Weber, Enzymology of cancer cells. N. Engl. J. Med. 3:486 (1977).CrossRefGoogle Scholar
  2. 2.
    D. Balinski, C.E. Platz, and J.W. Lewis, Enzyme activities in normal, dyplastic and cancerous human breast tissue. JNCI 72:217 (1984).Google Scholar
  3. 3.
    S.H. Gregory and S.K. Bose, Density gradient changes in hexose transport, glycolytic enzyme levels and glycolytic rates in uninfected and murine sarcoma virus-transformed rat kidney cells. Exp. Cell Res. 110:387 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    K.D. Hammond and D. Balinsky, Isoenzyme studies of several enzymes of carbohydrate metabolism in human adult and fetal tissues, tumor tissues and cell cultures. Cancer Res. 38:1323 (1976).Google Scholar
  5. 5.
    E. Eigenbrodt, P. Fister, and M. Reinacher, New perspectives on carbohydrate metabolism in tumor cells (review), in: “Regulation of carbohydrate metabolism,” R. Breitner, ed., CRC Press Inc., Boca Raton (1984).Google Scholar
  6. 6.
    K. Sato, I. Hatayama, K. Hoshino, F. Imai, S. Tsuchida, T. Sato, K. Nishimura, M. Tatematsu, and N. Ito, Enzyme deviation patterns in primary rat hepatomas induced by sequential administration of two chemically different carcinogens. Cancer Res. 41:4147 (1981).PubMedGoogle Scholar
  7. 7.
    P.R. Walker and R. van Potter, Isozymes studies on adult, regenerating, precancerous and developing liver in relation to findings in hepatomas. Advances in Enzyme Regulation 10:339 (1972).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Silber, E. Checinska, J. Rabczynski, A.A. Kasprzak, and M. Kochman, Isozyme pattern of pyruvate kinase during hepatocarcino genesis induced by 2-acetylaminofluorene in rat liver. Eur. J. Cancer 14:729 (1977).Google Scholar
  9. 9.
    S. Yanagi, S. Makiura, M. Arai, K. Matsumura, K. Hirao, N. Ito, and T. Tanaka, Isozyme pattern of pyruvate kinase in various primary liver tumors induced during the process of hepatocarcinogenesis. Cancer Res. 34:2283 (1974).PubMedGoogle Scholar
  10. 10.
    F.A. Breemer, A.M.C. Vlug, M.F. Rousseau-Merck, C.W.M. Veelen, G. Rijksen, and G.E.J. Staal, Glycolytic enzymes from human neuroectodermal tumors of childhood. Eur. J. Cancer Clin. Oncol. 20:253 (1984).CrossRefGoogle Scholar
  11. 11.
    F.H. Breemer, A.M.C. Vlug, G. Rijksen, H. Hamburg, and G.E.J. Staal, Characterisation of some glycolytic enzymes from human retina and retinoblastoma. Cancer Res. 42:4228 (1982).Google Scholar
  12. 12.
    R. Oskam, G. Rijksen, G.E.J. Staal, and S. Vora, Isozymic composition and regulatory properties of phosphofructokinase from well differentiated and anaplastic medullar thyroid carcinomas of the rat. Cancer Res. 45:135 (1985).PubMedGoogle Scholar
  13. 13.
    M. Reinacher and E. Eigenbrodt, Immunohistological demonstration of the same type of pyruvate kinase isoenzyme (M2-PK) in tumors of chicken and rat. Virchows Arch. (Cell Pathol.) 37:79 (1981).CrossRefGoogle Scholar
  14. 14.
    M. Reinacher, E. Eigenbrodt, U. Gerbracht, G. Zenk, I. Timmermann-Trosiener, P. Bentley, F. Waechter, and R. Schulte-Hermann, Pyruvate kinase isozymes in altered foci and carcinoma of rat liver. Carcinogenesis 7:1351 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    R.W. Moreadith and A.L. Lehniger, The pathway of glutamate and glutamine oxidation by tumor cell mitochondria. J. Biol. Chem. 259:6215 (1984).PubMedGoogle Scholar
  16. 16.
    L.A. Sauer, R.T. Dauchy, W.O. Nagel, and H.P. Morris, Mitochondrial malic enzymes. Mitochondrial NADP+-dependent malic enzyme activity and malate dependent pyruvate formation are progression-linked in Morris hepatomas. J. Biol. Chem. 255:3844 (1980).PubMedGoogle Scholar
  17. 17.
    W.L. McKeehan, Glycolysis, glutaminolysis and cell proliferation. Cell. Biol. int. Rep. 6:635 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    L.J. Reitzer, B.M. Wice, and D. Kennell, Evidence that glutamine, not sugar, is the major energy source for cultured HeLa-cells. J. biol. Chem. 254:2667 (1979).Google Scholar
  19. 19.
    K. Furukawa, S. Numoto, K. Furuya, N.T. Furukawa, and G.M. Williams, Effects of hepatocarcinogen nafenopin, a peroxisome proliferator, on the activities of rat liver glutathione-requiring enzymes and catalase in comparison to the action of phenobarbital. Cancer Res. 45:5011 (1985).PubMedGoogle Scholar
  20. 20.
    H. Bergmeyer, Glucokinase, in: “Methoden der enzymatischen Analyse,” I:502, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  21. 21.
    H. Bergmeyer, 6-phosphogluconat-Dehydrogenase, in: “Methoden der enzymatischen Analyse,” I:533, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1984).Google Scholar
  22. 22.
    E.S. Baginski, P.P. Fao, und B. Zak, Glucose-6-Phosphatase, in: “Methoden der enzymatischen Analyse,” I:909, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  23. 23.
    E. Eigenbrodt and W. Schoner, Purification and properties of the pyruvate kinase isoenzymes type L and M2 from chicken liver. Hoppe-Seyler’s Z. Physiol. Chem. 358:1033 (1977).PubMedCrossRefGoogle Scholar
  24. 24.
    A. McPherson, D. Burkey, and P. Stankiewicz, Crystalline alkaline from fructose-l,6-diphosphatase. J. Biol. Chem. 252:7031 (1977).PubMedGoogle Scholar
  25. 25.
    I.A. Brand and H.D. Söling, Rat liver phosphofructokinase. J. Biol. Chem. 249:7824 (1974).PubMedGoogle Scholar
  26. 26.
    M. Suda and H. Nakagawa, L-serine dehydratase, in: “Methods in Enzymology,” Part B, 17:346, S.P. Colowick and N.O. Kaplan, eds., Academic Press, New York and London (1971).Google Scholar
  27. 27.
    M. Zelewski and J. Swierczynski, The effect of Clofibrate feeding on the NADP-linked dehydrogenase activity in rat tissue. Biochim. Biophys. Acta 758:152 (1983).PubMedGoogle Scholar
  28. 28.
    G.W. Löhr und H.D. Waller, Glucose-6-phosphat-Dehydrogenase, in: “Methoden der enzymatischen Analyse,” I:673, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  29. 29.
    J. P. Persijn and W. van der Silk, L-γ-Glutamy1transferase. J. Clin. Chem. Clin. Biochem. 14:421 (1976).PubMedGoogle Scholar
  30. 30.
    U. Bergmeyer, K. Grawehn, und M. Graßl, Lactat-Dehydrogenase, in: “Methoden der enzymatischen Analyse,” I:513, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  31. 31.
    U. Bergmeyer, K. Grawehn, und M. Graßl, Enolase, in: “Methoden der enzymatischen Analyse,” I:476, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  32. 32.
    G. Michal und H.O. Beutler, D-Fructose-1,6-diphosphat, Dihydroxyaceton-phosphat und D-Glycerinaldehyd-3-phosphat, in: “Methoden der enzymatischen Analyse,” II:1359, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  33. 33.
    R. Czok und W. Lamprecht, Phosphoenolpyruvat und D-Glycerat-2-phosphat, in: “Methoden der enzymatischen Analyse,” II:1491, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  34. 34.
    H. Bergmeyer und G. Michal, D-Glucose-6-phosphat, in: “Methoden der enzymatischen Analyse,” II:1279, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  35. 35.
    Bio-Rad Laboratories, Bio-Rad protein assay instruction manual. Bio-Rad Laboratories GmbH, München (1983).Google Scholar
  36. 36.
    T. Kitagawa and H.C. Pitot, The regulation of serine dehydratase and glucose-6-phosphatase in rat liver during diethylnitrosamine and N-2-fluorenylacetamide feeding: a histochemical study. Cancer Res. 35:1075 (1975).PubMedGoogle Scholar
  37. 37.
    W.J. Wasilenko and A.C. Marchok, Pyruvate regulation of growth and differentiation in primary cultures of rat tracheal epithelial cells. Exper. Cell Res. 155:507 (1984).CrossRefGoogle Scholar
  38. 38.
    J. Groelke and H. Amos, Transaminase inhibitors block glycolysis and G1 to S phase progression in chick embryo fibroblasts. Reversal by α-Keto acids. J. Cell Phys. 119:133 (1984).CrossRefGoogle Scholar
  39. 39.
    E. Eigenbrodt and M. Reinacher, Carbohydrate metabolism in neoplastic tissue. Infusionstherapie 13:85 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • U. Gerbracht
    • 1
  • E. Roth
    • 2
  • K. Becker
    • 3
  • M. Reinacher
    • 4
  • E. Eigenbrodt
    • 1
  1. 1.Institut für Biochemie und EndokrinologieGermany
  2. 2.Chirurgische UniversitätsklinikWienAustria
  3. 3.Institut für Veterinär-PhysiologieGermany
  4. 4.Institut für Veterinär-PathologieGermany

Personalised recommendations