Advertisement

Cell Death (Apoptosis) in Normal and Preneoplastic Liver Tissue

  • W. Bursch
  • R. Schulte-Hermann

Abstract

Numerous compounds of “xenobiotic” origin such as the environmental pollutant α-hexachlorocyclohexane, the synthetic sex steroid cyproterone acetate (CPA), phenobarbital (PB) or various other lipophilic compounds have been found to produce liver tumors in long-term animal experiments, although they do not exhibit detectable genotoxic activity. Studies on the mechanisms of action of such nongenotoxic hepatocarcinogens revealed that these with respect to their chemical structure and general biological or pharmacological effects very heterogenous chemicals share the ability to increase activities of hepatic enzymes involved in the metabolism of lipophilic substrates and to increase the size (hypertrophy) and the number (hyperplasia) of hepatocytes. These changes are thought to reflect an adaptive program in the liver that is switched on consequently to the increased functional demands on the organ (Conney et al. 1960; Argyris and Magnus 1968; Schlicht et al. 1967, 1968; Koransky et al. 1969; Schulte-Hermann 1974; Schulte-Hermann et al. 1980a,b).

Keywords

Cyproterone Acetate Normal Hepatocyte Liver Growth Distinct Border Adaptive Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argyris T.S. and Magnus D.R. (1968) The stimulation of liver growth and demethylase activity following phenobarbital treatment. Dev Biol 17: 187–201PubMedCrossRefGoogle Scholar
  2. Bursch W., Düsterberg B and Schulte-Hermann R. (1986) Growth, regression and cell death in rat liver as related to tissue levels of the hepatomitogen cyproterone acetate. Arch Toxicol 59: 221–227PubMedCrossRefGoogle Scholar
  3. Bursch W., Lauer B., Timmermann-Trosiener T., Barthel G., Schuppler J, Schulte-Hermann R.,(1984) Controlled cell death (apoptosis) of normal and putative preneoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis 5: 453–458PubMedCrossRefGoogle Scholar
  4. Bursch W., Taper H.S., Lauer B., Schulte-Hermann R.,(1985) Quantitative histological and histochemical studies on the occurrence and stages of controlled cell death (apoptosis) during regression of rat liver hyperplasia. Virch Arch Cell Pathol 50: 153–166CrossRefGoogle Scholar
  5. Columbano A., Ledda-Columbano G.M., Rao, P.M., Rajalakshmi, S. and Sarma, D.S.R. (1984) Occurrence of cell death (apoptosis) in preneoplastic and neoplastic liver cells. Am J Pathol 116: 441–446PubMedGoogle Scholar
  6. Conney A.H., Davison C. Gastel R., Burns J.J. (1960) Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther 130: 1–8PubMedGoogle Scholar
  7. Epstein C.J., Moses H.L, Epstein L.B. and Garrison M.M. (1967) A structural analysis of hepatomegaly induced by a hormone-secreting tumor. Exp Mol Pathol 7: 304–326PubMedCrossRefGoogle Scholar
  8. Farber J.A. and El-Mofty S.K. (1975) The biochemical pathology of liver cell necrosis. Am J Pathol 81: 237–250PubMedGoogle Scholar
  9. Ferguson D.J.P. and Anderson T.J. (1981) Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br J Cancer 44: 177–181PubMedCrossRefGoogle Scholar
  10. Kennedy J.C., Pearce W.M., and Parrot D.M.V. (1958) Liver growth in the lactating rat. J Endocrinol 17: 158–160PubMedCrossRefGoogle Scholar
  11. Kerr J.F.R., Wyllie A.H., Currie A.R. (1972) Apoptosis: a basic biological phenomen with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  12. Koransky W., Magour S., Noack G. and Schulte-Hermann (1969) Über den Einfluß induzierender Substanzen auf Fremdstoff-Oxydasen und andere Redoxenzyme der Leber. Naunyn-Schmiedebergs Arch Pharmacol 263: 281–296Google Scholar
  13. Levine W.G., Ord M.G. and Stocken L.A. (1977) Some biochemical changes associated with nafenopin induced liver growth in the rat. Biochem Pharmacol 26: 939–942PubMedCrossRefGoogle Scholar
  14. Meybehm M., Stiens R. and Gedigk P. (1986) Die Apoptose-Mitosehäufigkeit in der Leber bei verschiedenen Lebererkrankungen. Verh Dtsch Ges Path 70: 562Google Scholar
  15. Peraino C., Fry R.J.M., Staffeldt E. and Christopher J.P. (1975) Comparative enhancing effects of phenobarbital, amobarbital, diphenylhydantoin, and dichlorodiphenyltrichloroethane on 2-acethylaminofluorene-induced hepatic tumorigenesis in the rat. Cancer Res 35: 2884–2890PubMedGoogle Scholar
  16. Pitot H.C. and Sirica A.E., (1980) The stages of initiation and promotion in hepatocarcinogenesis. Biochem Biophys Acta 605: 191–215PubMedGoogle Scholar
  17. Popper H. and Keppler D. (1986) Networks of interacting mechanisms of hepatocellular degeneration and death. Progress in liver disease. Vol VIII, pp. 209–235Google Scholar
  18. Recknagel R.O. (1967) Carbon tetrachloride hepatotoxicity. Pharmacol Rev 19: 145–149PubMedGoogle Scholar
  19. Schlicht J., Koransky W. Magour S. Schulte-Hermann R. (1968) Größe und DNS-Synthese der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedebergs Arch Pharmacol 261: 26–41Google Scholar
  20. Schlicht J., Koransky W., Schulte-Hermann R.,(1967) Zur Lebervergrößerung unter dem Einfluß von Pharmaka. Verh Dtsch Ges Inn Med 73: 251–255PubMedGoogle Scholar
  21. Schulte-Hermann R. (1974) Induction of liver growth by xenobiotic compounds and other stimuli. Crit Rev Toxicol 3: 97–158CrossRefGoogle Scholar
  22. Schulte-Hermann R. (1985) Tumor promotion in the liver. Arch Toxicol 57: 147–158PubMedCrossRefGoogle Scholar
  23. Schulte-Hermann R. and Schmitz E (1980) Feedback inhibiton of hepatic DNA synthesis. Cell Tiss Kinet 13: 371–380Google Scholar
  24. Schulte-Hermann R., Hoffmann V., Parzefall W., Kallenbach M., Gerhardt A. and Schuppler J. (1980b) Adaptive responses of rat liver to the gestagen and anti-androgen cyproterone acetate and other inducers. II Induction of growth. Chem Biol Interact 31: 287–300PubMedCrossRefGoogle Scholar
  25. Schulte-Hermann R., Koransky W., Leberl C. and Noack G. (1971) Hyperplasia and hypertrophy of rat liver induced by α-hexachlorocyclohexane and butylhydroxytoluene. Retention the hyperplasia during involution of the enlarged organ. Vir Arch Abt B, Zellpath 9: 125–134Google Scholar
  26. Schulte-Hermann R., Landgraf H. and Koransky W. (1977) Effect of hypophysectomy on the stimulation of liver growth by α-hexachlorocyclohexane, phénobarbital and partial hepatectomy in the rat. Naunyn-Schmiedebergs Arch Pharmacol 298: 137–142PubMedCrossRefGoogle Scholar
  27. Schulte-Hermann R., Parzefall W. and Bursch W. (1986) Role of stimulation of liver growth by chemicals in hepatocarcinogen-sis. Banbury Report 25: Nongenotoxic Mechanisms in Carcinogensis, in pressGoogle Scholar
  28. Schulte-Hermann R., Schuppler J., Timmermann-Trosiener I., Ohde G., Bursch W. and Berger H (1983) The role of growth of normal and preneoplastic cell populations for tumor promotion in rat liver. Enironmental Health Perspect. Vol 50, pp 185–194CrossRefGoogle Scholar
  29. Schulte-Hermann R., Hoffmann V., Landgraf H. (1980c) Adaptive response of rat liver to the gestagen and anti-androgen cyproterone acetate and other inducers. III. Cytological changes. Chem Biol Interact 31: 301–311PubMedCrossRefGoogle Scholar
  30. Schulte-Hermann R., Parzefall W. (1980a) Adaptive response or rat liver to the gestagen and anti-androgen cyproterone acetate and other inducers. I. Induction of drug-metabolizing enzymes. Chem Biol Interact 31: 279–286PubMedCrossRefGoogle Scholar
  31. Searle J., Harmon B.V., Bishop C.J. and Kerr J.F.R. (1987) The significance of cell death by apoptosis in hepatobiliary disease. J Gastroent and Heptol 2: 77–96CrossRefGoogle Scholar
  32. Trump B.F., Berezesky I.K. and Osornio-Vargas A.R. (1981) Cell death and disease process. The role of calcium. In: Bowen I.D., Lockshin R.A. (eds) Cell death in biology and pathology. Chapman and Hall, London, New YorkGoogle Scholar
  33. Ucker D.S. (1987) Cytotoxic T lymphocytes and glucocorticoids acitvate an endogenous suicide process in target cells. Nature 327: 62–64PubMedCrossRefGoogle Scholar
  34. Watanabe K., Williams G.M. (1978) Enhancement of rat hepato-cellular-altered foci by the liver tumor promoter phenobarbital: evidence that foci are precursors of neoplasms and that the promoter acts on carcinogen-induced lesions. J Natl Cancer Inst 61: 1311PubMedGoogle Scholar
  35. Weinstein B., Wigler M., Fisher P.B. Sisskin E., and Pietrapaolo C., (1978) Cell culture studies on the biologic effects of tumor promoters. In: Slaga T.J., Sivak A. and Boutwell R.K. (eds) Carcinogensis Vol 2, Raven Press, New York pp. 313–333Google Scholar
  36. Wyllie A.H., Kerr J.F.R., Currie A.R. (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • W. Bursch
    • 1
  • R. Schulte-Hermann
    • 1
  1. 1.Institut für Tumorbiologie-KrebsforschungAbtl. Onkologische ToxikologieWienAustria

Personalised recommendations