Skip to main content

Reversible Complexes for the Recovery of Dioxygen

  • Chapter

Abstract

Dioxygen 1s produced 1n tonnage quantities by the distillation of air at cryogenic temperatures. In recent years, alternative technologies have emerged that employ O2- or N2-select1ve sorbents or O2-permselectlve polymer membranes. New transition metal complexes that can bind O2 reversibly and with high specificity may provide the basis for even better processes for dioxygen recovery. One of the more promising approaches 1s the use of such complexes as O2 carriers In facilitated transport Immobilized liquid membranes. The performance of the cyclidene lacunar “protected site” dioxygen complexes developed by D. Busch et al. has been evaluated 1n such membranes operating at ca. 0°C. The complexes facilitate the transport of dioxygen and result 1n O2 permeabilities and O2/N2 select1v1t1es that have been related 1n a preliminary manner to the complex concentration, equilibrium O2 binding, reaction kinetics, and carrier and O2 dlffuslvltles. While the cyclidene complexes proved to be useful in these experimental studies, for practical membranes new carriers would have to be devised that are much more stable toward oxidative degradation. The synthesis and structure of a new “protectedsite” M reversible cobalt dioxygen complex are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knoblauch, K. Chem. Eng. 1978 (Nov 6 ). 87.

    Google Scholar 

  2. Nandi, S.P.; Walker, Jr. P.L. Sep. Sci. 1976. 11, 441.

    Article  CAS  Google Scholar 

  3. Juntgen, H.; Knoblauch, K.; Hardner, K. Fuel 1981. 60, 817.

    Article  Google Scholar 

  4. Breck, D.W. “Zeolite Molecular Sieves”; John Wiley & Sons: N.Y., 1974, 709. See also ref lb.

    Google Scholar 

  5. Gubelmann, M.H.; Williams, A.F. Struct. Bonding 1983. 55, 1.

    Article  CAS  Google Scholar 

  6. Niederhoffer, E.C.; Timmons, J.H.; Martell, A.E. Chem. Rev. 1984. 84. 137.

    Article  CAS  Google Scholar 

  7. Spiro, T.G. “Metal Ion Activation of Dioxygen”; John Wiley: New York, 1980.

    Google Scholar 

  8. Royal Society of Chemistry. “Oxygen and Life”, Special Publication #39; Royal Society of Chemistry, ISBN 0 85186 285 8, 1981.

    Google Scholar 

  9. Chang, C.K.; Dolphin, D. J. Am. Chem, Soc. 1976. 98, 1607.

    Article  CAS  Google Scholar 

  10. Rlcard, L.; Schappacher, M.; Weiss, R.; Montlel-Montoya, R.; Bill, E.; Gonser, U.; Trautweln, A. Nouv. J. Chim. 1983. 7, 405.

    Google Scholar 

  11. Martell, A.E.; Calvin, M. “Chemistry of the Metal Chelate Compounds”; Prentice-Hall Inc.: Englewood CUffs, N.J., 1952, pp 336–357.

    Google Scholar 

  12. Diehl, H. Iowa State Coll. J. Sci. 1947. 21, 271.

    CAS  Google Scholar 

  13. Adduci, A.J. Presented at the 107th National Meeting of the American Chemical Society, Chicago, 111., August, 1975.

    Google Scholar 

  14. Collman, J.P.; Brauman, J. I.; Doxsee, K.M.; Halbert, T.R.; Hayes, S.E.; Suslick, K.S. J. Am. Chem. Soc. 1978. 100, 2761.

    Article  CAS  Google Scholar 

  15. Wöhrle, D.; Bohlen, H.; Blum, J.K. Makromol. Chem. 1986. 187. 2081.

    Article  Google Scholar 

  16. Nishide, H.; Yoshioka, H.; Wang, S.; Tsuchida, E. Ibid. 1985. 186. 1513.

    CAS  Google Scholar 

  17. Tashkova, K.A.; Andreev, A.J. Mol. Struct. 1984. 115, 55.

    Article  CAS  Google Scholar 

  18. Basolo, F.; Hoffman, B.M.; Iken, J.A. Acc. Chem. Res. 1975. 8, 392.

    Article  Google Scholar 

  19. Herron, N. Inorg. Chem. 1986. 25, 4714.

    Article  CAS  Google Scholar 

  20. Schoonheydt, R.A.; Pelgrlms, J. J. Chem. Soc. Pal ton 1981. 914.

    Google Scholar 

  21. Lunsford, J.H.; Camara, M.J. Inorg. Chem. 1983. 22, 2498.

    Article  Google Scholar 

  22. Roman, I.C. U.S. Patent 4,451,270 (1984). See also Ref 19.

    Google Scholar 

  23. Lonsdale, H. K. J. Membr. Sci. 1982. 10, 81.

    Article  CAS  Google Scholar 

  24. Harga, K. Chem. Econ. Eng. Rev. 1981. 13, 20.

    Google Scholar 

  25. Klmura, S.G.; Browall, W.R. J. Membr. Sci. 1986. 29, 69.

    Article  Google Scholar 

  26. Haraya, K. Chem. Econ. Eng. Rev. 1981. 13, 20.

    CAS  Google Scholar 

  27. Way, J.O.; Noble, R.D.; Flynn, T.M.; Sloan, F.O. J. Membr. Sc1. 1982 12, 239.

    Article  CAS  Google Scholar 

  28. Schoiander, P.F. Science 1960. 131, 585.

    Article  Google Scholar 

  29. Bassett, R.J.; Schultz, J.S. Biochim. Biophys. Acta 1970. 211, 194.

    Article  CAS  Google Scholar 

  30. Baker, R.F.; Lonsdale, H.K.; Matson, S.L. (Bend Research Inc.). “Liquid Membranes for the Production of Oxygen-Enriched A1r”, Contract No. DE-AC06-79ER10337; D0E/ER/10337-1, DE85 006056.

    Google Scholar 

  31. Stevens, J.C.; Busch, D.H. J. Am. Chem. Soc. 1980. 102. 3285.

    Article  CAS  Google Scholar 

  32. Busch, D.H.; Olszanski, D.J.; Stevens, J.C.; Schammel, W.P.; Kojima, M.; Herron, N.; Zimmer, L.L.; Holter, K.A.; Mocak, J. Ibid. 1981, 103, 1472.

    CAS  Google Scholar 

  33. Stevens, J.C. PhD Thesis, Ohio State University, 1979.

    Google Scholar 

  34. Kemena, L.L.; Noble, R.D.; Kemp, N.J. J. Membr. Sc1. 1983. 15, 259, and references cited therein.

    Article  CAS  Google Scholar 

  35. Koval, C.A.; Noble, R.D.; Way, J.D.; Louie, B.; Reyes, Z.E.; Bateman, B.R.; Horn, G.M.; Reed, D.L. Inorg. Chem. 1985. 24, 1147.

    Article  CAS  Google Scholar 

  36. Achord, J.M.; Hussey, C.L.; Anal. Chem. 1980. 52, 601.

    Article  CAS  Google Scholar 

  37. Akhrem, A.A.; Molsenkov, A.M.; Lakhvich, F.A. Izv. Akad. Nauk. SSSR. Ser. Khim. 1971. 12, 2786; Chem. Abstr. 1972. 71, 47914F.

    Google Scholar 

  38. Bamfleld, P. J. Chem. Soc. A 1969. 2021.

    Google Scholar 

  39. Gall, R.S.; Rogers, J.F.; Schaefer, W.P.; Christoph, G.G. J. Am. Chem. Soc. 1976. 98, 5135.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Norman, J.A.T., Pez, G.P., Roberts, D.A. (1988). Reversible Complexes for the Recovery of Dioxygen. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics