Skip to main content

Kinetics of Formation of Biological Oxygen Carriers

  • Chapter

Abstract

At this point in time, there are only three known types of resyijratory proteins involving only two transition elements (Chart I).1–4 These function to transport and store oxygen and therefore play a key role in biochemical processes. They can increase by up to one hundred fold the amount of oxygen delivered to tissues. The types include, reference to recentg reviews (a) the hemoglobins and myoglobins 5–7 the hemocyanins 8,9 and (c) the hemerythrins and myohemerythrins.10,11 In spite of their name, (b) and (c) do not contain the heme center.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Lamy and J. Lamy, Eds. “Invertebrate Oxygen-Binding Proteins: Structure, Active Site and Function” Marcel Dekker, New York, (1981).

    Google Scholar 

  2. M. Brunori, B. Giardina and H. A. Kuiper, Oxygen-Transport Proteins, in “Inorganic Biochemistry, Vol III” H.A.O. Hill, ed., Royal Society of Chemistry, London (1982), pp. 126–182 (excludes hemerythrin).

    Chapter  Google Scholar 

  3. A. G. Sykes, Functional Properties of the Biological Oxygen Carriers, in Adv. Inorg. Bioinorg. Mech. 1:119–176 (1982).

    Google Scholar 

  4. M. Brunori, M. Coletta and B. Giardina, Oxygen Carrier Proteins, in “Metalloproteins-Part 2: Metal Proteins with Non-redox Roles”, P.M. Harrison, ed., Verlag Chemie, Weinheim (1985) Chapter 6.

    Google Scholar 

  5. E. Antonini and M. Brunori, “Hemoglobin and Myoglobin in Their Reactions with Ligands”, North-Holland, Amsterdam (1971).

    Google Scholar 

  6. Q. H. Gibson, The Oxygenation of Hemoglobin, in “The Porphyrins, Vol. V, Part C”, D. Dolphin, ed., Academic Press, New York (1978) Chapter 5.

    Google Scholar 

  7. C. Ho ed. “Hemoglobin and Oxygen Binding” Elsevier Biomedical, New York (1982).

    Google Scholar 

  8. K. E. van Holde and K. I. Miller, Hemocyanins, Quart. Rev. Biophys., 15:1–129 (1982).

    Article  Google Scholar 

  9. H. D. Ellerton, N. F. Ellerton and H. A. Robinson, Hemocyanin-A Current Perspective, Prog. Biophys. Molec. Biol., 41:143–248 (1983).

    Article  CAS  Google Scholar 

  10. I. M. Klotz and D. M. Kurtz, Binuclear Oxygen Carriers:Hemerythrin, Accts. Chem. Res., 17:16–22 (1984).

    Article  CAS  Google Scholar 

  11. P. C. Wilkins and R. G. Wilkins, The Coordination Chemistry of the Binuclear Iron Site in Hemerythrin, Coordn. Chem. Revs., in press (1987).

    Google Scholar 

  12. S. E. V. Phillips, Structure and Refinement of Oxymyoglobin at 1.6 A Resolution, J. Mol. Biol. 142:531–554 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. B. Shaanan, The Iron-Oxygen Bond in Human Haemoglobin, Nature (London) 296:683–684 (1982).

    Article  CAS  Google Scholar 

  14. W. P. J. Gaykema, W. G. J. Hoi, J. M. Vereijken, N. M. Soeter, H. J. Bak and J. J. Beintema, 3.2A Structure of the Copper-Containing Oxygen-Carrying Protein Panulirus interruptus haemocyanin, Nature (London), 309:23–29 (1984).

    Article  CAS  Google Scholar 

  15. G. L. Woolery, L. Powers, M. Winkler, E. I. Solomon and T. G. Spiro, EXAFS Studies of Binuclear Copper Site of Oxy-, Deoxy-, Metaquo-, Metfluoro-, and Metazidohemocyanin from Arthropods and Molluscs, J. Am. Chem. Soc., 106:86–92 (1984).

    Article  CAS  Google Scholar 

  16. J. Sander-Loehr, Oxygen-Binding to the Binuclear Iron Center of Hemerythrin, in “Frontiers in Bioinorganic Chemistry”, A.V. Xavier, ed., VCH Publishers, Weinheim (1986) pp. 574–583.

    Google Scholar 

  17. M. F. Perutz, Stereochemical Mechanism of Oxygen Transport by Haemoglobin, Proc. Roy. Soc. (London) B208:135–162 (1980).

    Google Scholar 

  18. L. J. Parkhurst, Hemoglobin and Myoglobin Ligand Kinetics, Ann. Rev. Phys. Chem. 30:503–546 (1979).

    Article  CAS  Google Scholar 

  19. H. Hartridge and F. J. W. Roughton, Method of Measuring the Velocity of Very Rapid Chemical Reactions, Proc. Roy. Soc. (London), 104A:376–394 (1923); Kinetics of Hemoglobin, II. Velocity with which Oxygen Dissociates from its Combination with Hemoglobin, Proc. Roy. Soc. (London), 104A:395-430 (1923); Kinetics of Hemoglobin. III. Velocity with which Oxygen Combines with Reduced Hemoglobin, Proc. Roy . Soc. (London), 107A:654-683 (1925).

    Article  CAS  Google Scholar 

  20. F. J. W. Roughton, The Origin of the Hartridge-Roughton Rapid Reaction Velocity Method, in “Rapid Mixing and Sampling Techniques in Biochemistry” B. Chance, R.H. Eisenhardt, Q.H. Gibson and K.K. Lonberg-Holm, eds., Academic Press, New York (1964) pp. 5–13.

    Google Scholar 

  21. Q. H. Gibson, Application of Rapid Reaction Techniques to the Study of Biological Oxidations, Ann. Rev. Biochem. 35:435–456 (1966).

    Article  CAS  Google Scholar 

  22. S. Claesson, ed. ′Fast Reactions and Primary Processes in Chemical Kinetics (Nobel Symposium V), Interscience Publishers, New York, 1967; lectures by R. G. W. Norrish (pp. 33-67), G. Porter (pps. 141-161) and M. Eigen (pps. 333-367).

    Google Scholar 

  23. Q. H. Gibson, The Photochemical Formation of a Quickly Reacting Form of Haemoglobin, Biochem. J., 71:293–303 (1959).

    PubMed  CAS  Google Scholar 

  24. C. A. Sawicki and Q. H. Gibson, Quaternary Conformational Changes in Human Hemoglobin Studied by Laser Photolysis of Carboxyhemoglobin, J. Biol. Chem. 251:1533–1542 (1976).

    PubMed  CAS  Google Scholar 

  25. L. Eisenstein and H. Frauenfelder, Introduction to Hemoproteins, and L. J. Noe, The Study of the Primary Events in the Photolysis of Hemoglobin and Myoglobin, in “Biological Events Probed by Ultrafast Laser Spectroscopy”, R.R. Alfano, ed., Academic Press, New York (1982), Chapters 14 and 15.

    Google Scholar 

  26. J. M. Friedman, T. W. Scott, G. J. Fisanick, S. R. Simon, E. W. Findsen, M. R. Ondrias and V. W. Macdonald, Localized Control of Ligand Binding in Hemoglobin: Effect of Tertiary Structure on Picosecond Geminate Recombination, Science, 229:187–190 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. M. A. West, Flash and Laser Photolysis in “Investigation of Rates and Mechanisms of Reactions, Part II: Investigation of Elementary Reaction Steps in Solution and Fast Reaction Techniques”, C.F. Bernasconi, ed., Wiley-Interscience, New York (1986).

    Google Scholar 

  28. T. G. Spiro and J. Terner, Heme Protein Structure and Dynamics, Studied by Resonance Raman Spectroscopy Pure Appl. Chem. 55:145–149 (1983).

    CAS  Google Scholar 

  29. J. Terner and M. A. El-Sayed, Time-Resolved Resonance Raman Spectroscopy of Photobiological and Photochemical Transients, Acc. Chem. Res. 18:331–338 (1985).

    Article  CAS  Google Scholar 

  30. E. Antonini, L. Rossi-Bernardi and E. Chiancone, eds. “Hemoglobin” Methods in Enzymology, volume 76, Academic Press (1981) Section VII.

    Google Scholar 

  31. J. LaGow and L. J. Parkhurst, Kinetics of Carbon Monoxide and Oxygen Binding for Eight Electrophoretic Components of Sperm-Whale Myoglobin, Biochemistry, 11:4520–4525 (1972).

    Article  PubMed  CAS  Google Scholar 

  32. A. E. Romero-Herrara, M. Goodman, H. Dene, D. E. Bartnicki and H. Mizukami, An Exceptional Amino Acid Replacement on the Distal Side of the Iron Atom in Probescidean Myoglobin, J. Molec. Evolution, 17:140–147 (1981).

    Article  Google Scholar 

  33. C. A. Appleby, J. H. Bradbury, R. J. Morris, B. A. Wittenberg, J. B. Wittenberg and P. E. Wright, Leghemoglobin, J. Biol. Chem. 258:2254–2259 (1983).

    PubMed  CAS  Google Scholar 

  34. L. J. Parkhurst, P. Sima and D. J. Goss, Kinetics of Oxygen and Carbon Monoxide Binding to the Hemoglobins of Glycera dibranchiata, Biochemistry, 19:2688–2692 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. J. S. Olson, M. E. Andersen and Q. H. Gibson, The Dissociation of the First Oxygen Molecule from Some Mammalian Oxyhemoglobins, J. Biol. Chem., 246, 5919–5923 (1971).

    PubMed  CAS  Google Scholar 

  36. C. A. Sawicki and Q. H. Gibson, Properties of the T State of Human Oxyhemoglobin Studied by Laser Photolysis, J. Biol. Chem. 252:7538–7547 (1977).

    PubMed  CAS  Google Scholar 

  37. M. P. Mims, A. G. Porras, J. S. Olson, R. W. Noble and J. A. Peterson, Ligand Binding to Heme Proteins, J. Biol. Chem. 258:14219–14232 (1983).

    PubMed  CAS  Google Scholar 

  38. J. Monod, J. Wyman and J. Changeux, On the Nature of Aliosteric Transitions: A Plausible Model, J. Mol. Biol. 12:88–118 (1965).

    Article  PubMed  CAS  Google Scholar 

  39. S. J. Edelstein, Extensions of the Aliosteric Model for Haemoglobin Nature (London) 230:224–227 (1971).

    CAS  Google Scholar 

  40. J. J. Hopfield, R. G. Shulman and S. Ogawa, An Allosteric Model of Hemoglobin: I, Kinetics, J. Mol. Biol., 61, 425–443 (1971).

    Article  PubMed  CAS  Google Scholar 

  41. Q. H. Gibson, Dynamics of Ligand Binding in Reference 7, pp. 321-327.

    Google Scholar 

  42. R. Benesch and R. E. Benesch, The Effect of Organic Phosphates from the Human Erythocytes on the Allosteric Properties of Hemoglobin Biochem. Biophys. Res. Commun. 26:162–167 (1967)

    Article  PubMed  CAS  Google Scholar 

  43. A. Chanutin and R. R. Curnish, Effect of Organic and Inorganic Phosphates on the Oxygen Equilibrium of Human Erythrocytes, Arch. Biochem. Biophys. 121:96–102 (1967).

    Article  PubMed  CAS  Google Scholar 

  44. E. Bucci and C. Fronticelli, A New Method for the Preparation of a and 3 Subunits of Human Hemoglobin, J. Biol. Chem. 240:551–552 (1965).

    Google Scholar 

  45. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder and I. C. Gunsalus, Dynamics of Ligand Binding to Myoglobin, Biochemistry, 14:5355–5373 (1975).

    Article  PubMed  CAS  Google Scholar 

  46. W. Doster, D. Beece, S. F. Bowne, E. E. Dilorio, L. Eisenstein, H. Frauenfelder, L. Reinisch, E. Shyamsunder, K. H. Winterhalter and K. T. Yue, Control of pH Dependence of Ligand Binding to Heme Proteins, Biochemistry, 21:4831–4839 (1982).

    Article  PubMed  CAS  Google Scholar 

  47. F. Stetzkowski, R. Banerjee, M. C. Marden, D. K. Beece, S. F. Bowne, W. Doster, L. Eisenstein, H. Frauenfelder, L. Reinisch, E. Shyamsunder and C. Jung, Dynamics of Dioxygen and Carbon Monoxide Binding to Soybean Leghemoglobin, J. Biol. Chem. 260:8803–8809 (1985).

    PubMed  CAS  Google Scholar 

  48. Q. H. Gibson, J. S. Olson, R. E. McKinnie and R. J. Rohlfs, A Kinetic Description of Ligand Binding to Sperm Whale Myoglobin, J. Biol. Chem. 261:10228–10239 (1986).

    PubMed  CAS  Google Scholar 

  49. H. Frauenfelder and P. G. Wolynes, Rate Theories and Puzzles of Hemeprotein Kinetics, Science, 229:337–345 (1985).

    Article  PubMed  CAS  Google Scholar 

  50. M. Brunori, H. A. Kuiper, E. Antonini, C. Bonaventura and J. Bonaventura, “Invertebrate Oxygen-Binding Proteins: Structure, Active Site and Function” Marcel Dekker, New York, (1981), p. 693

    Google Scholar 

  51. R. vanDriel, H. A. Kuiper, E. Antonini and M. Brunori, Kinetics of the Co-operative Reaction of Helix pomatia Hemocyanin with Oxygen, J. Mol. Biol. 121:431–439 (1978).

    Article  CAS  Google Scholar 

  52. E. Antonini, M. Brunori, A. Colosimo, H. A. Kuiper and L. Zello, Kinetics and Thermodynamic Parameters for Oxygen Binding to the Allosteric States of Panulirus Interruptus Hemocyanin, Biophys. Chem. 18:117–124 (1983).

    Article  PubMed  CAS  Google Scholar 

  53. G. D. Armstrong and A. G. Sykes, Reactions of O2 with Hemerythrin, Myoglobin and Hemocyanin: Effects of D2O on Equilibration Rate Constants and Evidence for H-Bonding, Inorg. Chem. 25:3135–3139 (1986).

    Article  Google Scholar 

  54. C. Manwell, Oxygen Equilibrium of Brachiopod Lingula Hemerythrins, Science, 132:550–551 (1960)

    Article  PubMed  CAS  Google Scholar 

  55. D. E. Richardson, R. C. Reem and E. I. Solomon, Cooperativity in Oxygen Binding to Lingula reevii Hemerythrin: Spectroscopic Comparison to the Sipunculid Hemerythrin Coupled Binuclear Iron Active Site, J. Am. Chem. Soc., 105:7780–7781 (1983).

    Article  CAS  Google Scholar 

  56. D. J. A. deWaal and R. G. Wilkins, Kinetics of the Hemerythrin-Oxygen Interaction, J. Biol. Chem. 251:2339–2343 (1976).

    CAS  Google Scholar 

  57. A. L. Petrou, F. A. Armstrong, A. G. Sykes, P. C. Harrington and R. G. Wilkins, Kinetics of the Equilibration of Oxygen with Monomeric and Octameric Hemerythrin from Themiste zostericola, Biochim. Biophys. Acta, 670:377–384 (1981).

    CAS  Google Scholar 

  58. P. Wilkins and R. G. Wilkins, unpublished experiments.

    Google Scholar 

  59. P. C. Wilkins and R. G. Wilkins, Acid-Assisted Anion Interaction with Deoxyhemerythrin, Biochim. Biophys. Acta, in press (1987).

    Google Scholar 

  60. K. S. Suslick and T. J. Reinert, The Synthetic Analogs of O2-Binding Heme Proteins, J. Chem. Educ. 62:974–983 (1985).

    Article  CAS  Google Scholar 

  61. K. D. Karlin, B. I. Cohen, J. C. Hayes, A. Farooq and J. Zubieta, Models for Methemocyanin Derivatives: Structural and Spectroscopic Comparisons of Related Azido-Coordinated (N3) Mono- and Dinuclear Copper(II) Complexes, Inorg. Chem., 26:147–153 (1987) and refs. therein.

    Article  CAS  Google Scholar 

  62. S. J. Lippard, The Bioinorganic Chemistry of Rust, Chem. in Britain 22:222–229 (1986) and refs. therein.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wilkins, R.G. (1988). Kinetics of Formation of Biological Oxygen Carriers. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics