Oxygen Binding by the Metalloproteins Hemerythrin, Hemocyanin, and Hemoglobin

  • Thomas M. Loehr


Respiring organisms have evolved three principal oxygen transport proteins, hemoglobins, hemerythrins, and hemocyanins, that possess radically different polypeptide structures, subunit aggregates, and active site structures. Hemoglobins are by far the most widespread, occurring in all mammals and vertebrates, many invertebrates, selected eukaryotic microorganisms, and even some leguminous plants. Hemoglobins are largely tetrameric proteins consisting of α2β2 subunits each of molecular weight ≅ 16,000; however, some invertebrate hemoglobins consist of huge aggregates with molecular weights into the millions. Vertebrate muscle tissue also contains a monomeric oxygen storage/transport protein, myoglobin, that is very similar to a hemoglobin monomer. Hemoglobin and myoglobin contain a “heme” prosthetic group: an iron complex of a macrocyclic tetrapyrrole, such as protoporphyrin IX. Crystal structures of these proteins in various states of ligation have been reported and form a thorough basis for the elucidation of oxygen coordination, protein allosteric control, cooperativity of oxygen binding, and macromolecular assembly [1].


Oxygen Binding Resonance Raman Spectrum Peroxo Complex Binuclear Copper Peroxo Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dickerson, R. E.; Geis, I. (1983) Hemoglobin, Benjamin/Cummings, Menlo Park, CA.Google Scholar
  2. 2.
    Hendrickson, W. A.; Smith, J. L. (1981) in Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function, Lamy, J.; Lamy, J.; Eds., Marcel Dekker, New York, pp. 343–352.Google Scholar
  3. 3.
    Sieker, L. C.; Stenkamp, R. E.; Jensen, L. H. (1982) in The Biological Chemistry of Iron, Dunford, H.B.; Dolphin, D.; Raymond, K.N.; Sieker, L.C., Eds., Reidel, Boston, p. 161.Google Scholar
  4. 4.
    Gaykema, W.P.J.; Volbeda, A.; Hoi, W.G.J. (1986) J. Mol. Biol. 187, 255.PubMedCrossRefGoogle Scholar
  5. 5.
    Linzen, B.; Soeter, N. M.; Riggs, A. F.; Schneider, H.-J.; Schartau, W.; Moore, M. D.; Yokota, E.; Behrens, P. Q.; Nakashima, H.; Takagi, T.; Nemoto, T.; Vereijken, J. M.; Bak, H. J.; Beintema, J. J.; Volbeda, A.; Gaykema, W. P. J.; Hoi, W. G. J. (1985) Science 229, 519.PubMedCrossRefGoogle Scholar
  6. 6.
    Solomon, E. I.; Eickman, N. C.; Gay, R. R.; Penfield, K. W.; Himmelwright, R. S.; Loomis, L. D. (1981) in Invertebrate Oxygen Binding Proteins: Structure, Active Site and Function, Lamy, J.; Lamy, J., Eds., Marcel Dekker, New York, pp. 487–502.Google Scholar
  7. 7.
    Niederhoffer, E.C.; Timmons, J.H.; Martell, A.E. (1984) Chem. Rev. 84, 137.CrossRefGoogle Scholar
  8. 8.
    Traylor, T.G.; Koga, N.; Deardurff, L.A. (1985) J. Am. Chem. Soc. 107, 6504.CrossRefGoogle Scholar
  9. 9.
    Phillips, S.E.V.; Schoenborn, B.P. (1981) Nature 292, 81.PubMedCrossRefGoogle Scholar
  10. 10a.
    Lavalette, D.; Tetreau, C.; Mispelter, J.; Momenteau, M.; Lhoste, J.-M. (1984) Eur. J. Biochem. 145, 555PubMedCrossRefGoogle Scholar
  11. 10b.
    Mispelter, J.; Momenteau, M.; Lavalette, D.; Lhoste, J.-M. (1983) J. Am. Chem. Soc. 105, 5165.CrossRefGoogle Scholar
  12. 11.
    Jameson, G.B.; Drago, R.S. (1985) J. Am. Chem. Soc. 107, 3017.CrossRefGoogle Scholar
  13. 12.
    Walker, F.A.; Bowen, J. (1985) J. Am. Chem. Soc. 107, 7632.CrossRefGoogle Scholar
  14. 13.
    Chang, C.K.; Kondylis, M. P. (1986) J. Chem. Soc., Chem. Commun., 316.Google Scholar
  15. 14.
    Suzuki, M.; Ishiguro, T.; Kozuka, M.; Nakamoto, K. (1981) Inorg. Chem. 20, 1993.CrossRefGoogle Scholar
  16. 15.
    Collman, J.P.; Brauman, J.I.; Halbert, T.R.; Suslick, K.S. (1976) Proc. Natl. Acad. Sci. USA 73, 3333.PubMedCrossRefGoogle Scholar
  17. 16.
    Blunt, F.J.; Hendra, P.J.; Mackenzie, J.R. (1969) J. Chem. Soc. D, 278.Google Scholar
  18. 17.
    Jones, R.D.; Budge, J.R.; Ellis, P.E., Jr.; Linnard, J.E.; Summerville, D.A.; Basolo, F. (1979) J. Organomet. Chem. 181, 151.CrossRefGoogle Scholar
  19. 18.
    Alben, J. O. (1978) The Porphyrins 3, 334.Google Scholar
  20. 19.
    Maxwell, J.C.; Volpe, J.A.; Barlow, C.H.; Caughey, W.S. (1974) Biochem. Biophys. Res. Commun. 58, 166.PubMedCrossRefGoogle Scholar
  21. 20.
    Urban, M.W.; Nakamoto, K.; Basolo, F. (1982) Inorg. Chem. 21, 3406.CrossRefGoogle Scholar
  22. 21.
    Abramowitz, S.; Acquista, N.; Levin, I.W. (1977) Chem. Phys. Lett. 50, 423.CrossRefGoogle Scholar
  23. 22.
    Bain, O.; Giguere, P.A. (1955) Can. J. Chem. 33, 527.CrossRefGoogle Scholar
  24. 23.
    Dunn, J.B.R.; Shriver, D.F.; Klotz, I.M. (1973) Proc. Natl. Acad. Sci. USA 70, 2582.PubMedCrossRefGoogle Scholar
  25. 24.
    McCallum, J.; Ahmad, S.; Shiemke, A. K.; Appelman, E. H.; Loehr, T. M.; Sanders-Loehr, J., unpublished results.Google Scholar
  26. 25.
    Freedman, T.B.; Yoshida, C.M.; Loehr, T.M. (1974) J. Chem. Soc., Chem. Commun., 1016.Google Scholar
  27. 26.
    McCandlish, E.; Miksztal, A.R.; Nappa, M.; Sprenger, A, Q.; Valentine, J.S.; Stong, J.D.; Spiro, T.G. (1980) J. Am. Chem. Soc. 102, 4268.CrossRefGoogle Scholar
  28. 27.
    Evans, J. C. (1969) J. Chem. Soc. D, 682.Google Scholar
  29. 28.
    Freedman, T.B.; Loehr, J.S.; Loehr, T.M. (1976) J. Am. Chem. Soc. 98, 2809.PubMedCrossRefGoogle Scholar
  30. 29.
    Tsubaki, M.; Yu, N.-T. (1981) Proc. Natl. Acad. Sci. USA 78, 3581.PubMedCrossRefGoogle Scholar
  31. 30.
    Watanabe, T.; Ama, T.; Nakamoto, K. (1984) J. Phys. Chem. 88, 440.CrossRefGoogle Scholar
  32. 31.
    Duff, L. L.; Appelman, E. H.; Shriver, D. F.; Klotz, I. M. (1979) Biochem. Biophys. Res. Commun. 90, 1098.PubMedCrossRefGoogle Scholar
  33. 32.
    Brunner, H. (1974) Naturwissenschaften 61, 129.CrossRefGoogle Scholar
  34. 33.
    Kitagawa, T.; Ondrias, M. R.; Rousseau, D.; Ikeda-Saito, M.; Yonetani, T. (1982) Nature 298, 869.PubMedCrossRefGoogle Scholar
  35. 34.
    Shaanan, B. (1982) Nature 296, 683.PubMedCrossRefGoogle Scholar
  36. 35.
    Steigemann, W.; Weber, E. (1982) in Hemoglobin Oxygen Binding Ho, C., Ed., Elsevier, New York, 20.Google Scholar
  37. 36.
    Kurtz, D.M., Jr.; Shriver, D.F.; Klotz, I.M. (1976) J. Am. Chem. Soc. 98, 5033.PubMedCrossRefGoogle Scholar
  38. 37.
    Stenkamp, R. E.; Sieker, L. C.; Jensen, L.H. (1984) J. Am. Chem. Soc. 106, 618.CrossRefGoogle Scholar
  39. 38.
    Stenkamp, R. E.; Sieker, L. C.; Jensen, L. H.; McCallum, J. D.; Sanders-Loehr, J. (1985) Proc. Natl. Acad. Sci. USA 82, 713.PubMedCrossRefGoogle Scholar
  40. 39.
    Loehr, T. M.; Shiemke, A. K. (1988) in Biological Applications of Raman Spectroscopy, Spiro, T.G., Ed., Vol. IV, Wiley, New York, in press.Google Scholar
  41. 40.
    Shiemke, A. K.; Loehr, T. M.; Sanders-Loehr, J. (1986) J. Am. Chem. Soc. 108, 2437.CrossRefGoogle Scholar
  42. 41.
    Reem, R. C.; and Solomon, E. I. (1987) J. Am. Chem. Soc. 109, 1216.CrossRefGoogle Scholar
  43. 42.
    Maroney, M. J.; Kurtz, D. M., Jr.; Nocek, J. M.; Pearce, L. L.; Que, L., Jr. (1986) J. Am. Chem. Soc. 108, 6871.CrossRefGoogle Scholar
  44. 43.
    Elam, W.T.; Stern, E.A.; McCallum, J.D.; Sanders-Loehr, J. (1983) J. Am. Chem. Soc. 105, 1919.CrossRefGoogle Scholar
  45. 44.
    Larrabee, J.A.; Spiro, T. G. (1980) J. Am. Chem. Soc. 102, 4217.CrossRefGoogle Scholar
  46. 45.
    Thamann, T. J.; Loehr, J. S.; Loehr, T. M. (1977) J. Am. Chem. Soc. 99, 4187.PubMedCrossRefGoogle Scholar
  47. 46.
    Reed, C. A. (1985) in Biological Inorganic Copper Chemistry, Karlin, K.D.; Zubieta, J., Eds., Adenine, New York, pp. 61–73.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Thomas M. Loehr
    • 1
  1. 1.Oregon Graduate CenterBeavertonUSA

Personalised recommendations