Skip to main content

Mechanisms of Dioxygen Activation in Metal-Containing Monooxygenases: Enzymes and Model Systems

  • Chapter

Abstract

Monooxygenase enzymes catalyze reactions in which one atom of oxygen, derived from dioxygen, is incorporated into an organic substrate while the other atom of oxygen is reduced by two electrons to form water.1,2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White, R. E.; Coon, M. J. Ann. Rev. Biochem, 49, 315–56 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. Hayaishi, O., In “Molecular Mechanisms of Oxygen Activation”; Hayaishi, O.; Editor; (Academic: New York, N. Y.), (1974); p 7.

    Google Scholar 

  3. Guenferich, F. P.; Macdonald, T. L. Acc. Chem. Res., 17, 9 (1984).

    Article  Google Scholar 

  4. Kaufman, S.; Fisher, D. B., In “Molecular Mechanisms of Oxygen Activation”; Hayaishi, O.; Editor; (Academic: New York, N. Y.), (1974); p 285.

    Google Scholar 

  5. Hamilton, G. A., In “Metal Ions in Biology, Vol. 3: Copper Proteins”; Spiro, T.G.; Editor; (John Wiley and Sons: New York, N. Y.), (1981); p. 205.

    Google Scholar 

  6. “Cytochrome P-450: Structure, Mechanism, and Biochemistry” Ortiz de Montellano, P.R.; Editor, (Plenum Press: New York, N. Y.), (1986).

    Google Scholar 

  7. Ruettinger, R. T.; Griffith, G. R.; Coon, M. J. Arch. Biochem. Biophys., 183, 528 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. Villafranca, J. J., In “Metal Ions in Biology, Vol. 3: Copper Proteins”; Spiro, T.G.; Editor; (John Wiley and Sons: New York, N. Y.), (1981); p 263.

    Google Scholar 

  9. Poulos, T. L.; Finzel, B. C.; Gunsalus, I. C.; Wagner, G. C.; Kraut, J. J. Biol. Chem., 260(30), 16122–30 (1985).

    PubMed  CAS  Google Scholar 

  10. McMurry, T. J.; Groves, J. T., In “Cytochrome P-450: Structure, Mechanism, and Biochemistry”; Ortiz de Montellano, P.R.; Editor; (Plenum Press: New York, N. Y.), (1986); p 1–28.

    Google Scholar 

  11. “Metal Ions in Biology, Vol. 2: Metal Ion Activation of Dioxygen” Spiro, T.G.; Editors, (Wiley-Interscience: New York, N. Y.), (1980).

    Google Scholar 

  12. Mason, H. S. Adv. Exp. Med. Biol., 74(Iron Copper Proteins), 464–9 (1976).

    PubMed  CAS  Google Scholar 

  13. Strothkamp, K. G.; Jolley, R. L.; Mason, H. S. Biochem. Biophys. Res. Commun., 70(2), 519–24 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. Strothkamp, K. G.; Mason, H. S. Biochem. Biophys. Res. Commun., 61(3), 827–32 (1974).

    Article  PubMed  CAS  Google Scholar 

  15. Makino, N.; McMahill, P.; Mason, H. S.; Moss, T. H. J. Biol. Chem., 249(19), 6062–6 (1974).

    CAS  Google Scholar 

  16. Jolley, R. L. J.; Evans, L. H.; Makino, N.; Mason, H. S. J. Biol. Chem., 249(2), 335–45 (1974).

    PubMed  CAS  Google Scholar 

  17. Makino, N.; Mason, H. S. J. Biol. Chem., 248(16), 5731–5 (1973).

    PubMed  CAS  Google Scholar 

  18. Jolley, R. L. J.; Evans, L. H.; Mason, H. S. Biochem. Biophys. Res. Commun., 46(2), 878–84 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. Huber, M.; Hintermann, G.; Lerch, K. Biochemistry, 24(22), 6038–44 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. Wilcox, D. E.; Porras, A. G.; Hwang, Y. T.; Lerch, K.; Winkler, M. E.; Solomon, E. I. J. Am. Chem. Soc., 107(13), 4015–27 (1985).

    Article  CAS  Google Scholar 

  21. Lerch, K. Mol. Cell. Biochem., 52(2), 125–38 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. Fisher, D. B.; Kirkwood, R.; Kaufman, S. J. Biol. Chem., 247(16), 5161–7 (1972).

    PubMed  CAS  Google Scholar 

  23. Bloom, L. M.; Gaffney, B. J.; Benkovic, S. J. Biochemistry, 25(15), 4204–10 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. Dix, T. A.; Benkovic, S. J. Biochemistry, 24(21), 5839–46 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. Dix, T. A.; Bollag, G. E.; Domanico, P.; Benkovic, S. J., Biochemistry,24(12), 2955–8 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. Lazarus, R. A.; Benkovic, S. J.; Kaufman, S. J. Biol. Chem., 258(18), 10960–2 (1983).

    CAS  Google Scholar 

  27. Lazarus, R. A.; DeBrosse, C. W.; Benkovic, S. J. J. Am. Chem. Soc., 104(24), 6869–71 (1982).

    Article  CAS  Google Scholar 

  28. Gottschall, D. W.; Dietrich, R. F.; Benkovic, S. J.; Shiman, R. J. Biol. Chem., 257(2), 845–9 (1982).

    PubMed  CAS  Google Scholar 

  29. Lazarus, R. A.; Dietrich, R. F.; Wallick, D. E.; Benkovic, S. J. Biochemistry, 20(24), 6834–41 (1981).

    Article  PubMed  CAS  Google Scholar 

  30. Moad, G.; Luthy, C. L.; Benkovic, P. A.; Benkovic, S. J. J. Am. Chem. Soc., 101(20), 6068–76 (1979).

    Article  CAS  Google Scholar 

  31. Pember, S. O.; Villafranca, J. J.; Benkovic, S. J. Biochemistry, 25(21), 6611–19 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. Groves, J. T. J. Chem. Educ., 62(11), 928–31 (1985).

    Article  CAS  Google Scholar 

  33. Wallick, D. E.; Bloom, L. M.; Gaffney, B. J.; Benkovic, S. J. Biochemistry, 23(6), 1295–302 (1984).

    Article  PubMed  CAS  Google Scholar 

  34. Peterson, J. A.; Basu, D.; Coon, M. J. J. Biol. Chem., 241, 5162–5164 (1966).

    PubMed  CAS  Google Scholar 

  35. Peterson, J. A.; Kusunose, M.; Kusunose, E.; Coon, M. J. J. Biol. Chem., 242, 4334–4340 (1967).

    PubMed  CAS  Google Scholar 

  36. May, S. W.; Abbott, B. J. Biochem. Biophys. Res. Commun., 48(5), 1230–4 (1972).

    Article  PubMed  CAS  Google Scholar 

  37. May, S. W.; Abbott, B. J. J. Biol. Chem., 248(5), 1725–30 (1973).

    PubMed  CAS  Google Scholar 

  38. May, S. W.; Schwartz, R. D. J. Amer. Chem. Soc., 96(12), 4031–2 (1974).

    Article  CAS  Google Scholar 

  39. May, S. W.; Steltenkamp, M. S.; Schwartz, R. D.; McCoy, C. J. J. Am. Chem. Soc., 98(24), 7856–8 (1976).

    Article  PubMed  CAS  Google Scholar 

  40. May, S. W.; Gordon, S. L.; Steltenkamp, M. S. J. Am. Chem. Soc., 99(7),. 2017–24 (1977).

    Article  PubMed  CAS  Google Scholar 

  41. Katopodis, A. G.; Wimalasena, K.; Lee, J.; May, S. W. J. Am. Chem. Soc., 106(25), 7928–35 (1984).

    Article  CAS  Google Scholar 

  42. May, S. W.; Padgette, S. R. Bio/Technology, 1(8), 677–86 (1983).

    Article  CAS  Google Scholar 

  43. May, S. W.; Katopodis, A. G. Enzyme Microb. Technol., 8(1), 17–21 (1986).

    Article  CAS  Google Scholar 

  44. Klinman, J. P.; Krueger, M.; Brenner, M.; Edmondson, D. E. J. Biol. Chem., 259(6), 3399–402 (1984).

    PubMed  CAS  Google Scholar 

  45. Kaufman, S.; Friedman, S. Pharmacol. Rev., 17, 71 (1965).

    PubMed  CAS  Google Scholar 

  46. May, S. W.; Phillips, R. S.; Mueller, P. W.; Herman, H. H. J. Biol. Chem., 256(16), 84 70–5 (1981).

    CAS  Google Scholar 

  47. Klinman, J. P.; Krueger, M. Biochemistry, 21(1), 67–75 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. May, S. W.; Phillips. R. S., J. Am. Chem. Soc., 102(18), 5981–3 (1980).

    Article  CAS  Google Scholar 

  49. May, S. W.; Mueller, P. W.; Padgette, S. R.; Herman, H. H.; Phillips, R. S. Biochem. Biophys. Res. Commun., 110(1), 161–8 (1983).

    Article  PubMed  CAS  Google Scholar 

  50. Colombo, G.; Rajashekhar, B.; Giedroc, D. P.; Villafranca, J. J. Biochemistry, 23(16), 3590–8 (1984).

    Article  PubMed  CAS  Google Scholar 

  51. Padgette, S. R.; Wimalasena, K.; Herman, H. H.; Sirimanne, S. R.; May, S. W. Biochemistry, 24, 5826–5839 (1985).

    Article  PubMed  CAS  Google Scholar 

  52. Bossard, M. J.; Klinman, J. P. J. Biol. Chem., 261(35), 16421–7 (1986).

    PubMed  CAS  Google Scholar 

  53. Miller, S. M.; Klinman, J. P. Biochemistry, 24(9), 2114–27 (1985).

    Article  PubMed  CAS  Google Scholar 

  54. Ahn, N.; Klinman, J. P. Biochemistry, 22(13), 3096–106 (1983).

    Article  PubMed  CAS  Google Scholar 

  55. Miller, S. M.; Klinman, J. P. Biochemistry, 22(13), 3091–6 (1983).

    Article  PubMed  CAS  Google Scholar 

  56. Ochiai, E. I. “Bioinorgganic Chemistry: An Introduction” (Allyn and Bacon: Boston), (1977).

    Google Scholar 

  57. White, R. E.; Sligar, S. G.; Coon, M. J. J. Biol. Chem., 255, 11108 (1980).

    PubMed  CAS  Google Scholar 

  58. Ortiz de Montellano, P. R., In “Cytochrome P-450: Structure, Mechanism, and Biochemistr”; Ortiz de Montellano, P.R.; Editor; (Plenum Press: New York, N. Y.), (1986); p 218–271.

    Google Scholar 

  59. see ref. 56, p. 266.

    Google Scholar 

  60. Poulos, T. L.; Kraut, J. J. Biol. Chem., 255(17), 8199–8205 (1980).

    PubMed  CAS  Google Scholar 

  61. Cotton, F. A.; Wilkinson, G., “Advanced Inorganic Chemistry: A Comprehensive Text”, 4th Ed, (Wiley: New York, N. Y.), (1980).; p 765 and 818.

    Google Scholar 

  62. Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc., 108(24), 7836–7837 (1986).

    Article  CAS  Google Scholar 

  63. Balasubramanian, P. N.; Bruice, T. C. J. Am. Chem. Soc., 108(18), 5495–5503 (1986).

    Article  CAS  Google Scholar 

  64. VanAtta, R. B.; Strouse, C. E.; Hanson, L. K.; Valentine, J. S. J. Am. Chem. Soc., 109(5), 1425–34 (1987).

    Article  Google Scholar 

  65. McCandlish, E.; Miksztal, A. R.; Nappa, M.; Sprenger, A. Q.; Valentine, J. S.; Stong, J. D.; Spiro, T. G. J. Am. Chem. Soc., 102(12), 4268–71 (1980).

    Article  CAS  Google Scholar 

  66. Burstyn, J. N.; Roe, J. A.; Miksztal, A. R.; Shaevitz, G. L.; Valentine, J. S., submitted for publication.

    Google Scholar 

  67. Regen, S. L.; Whitesides, G. M. J. Organomet. Chem., 59, 293–297 (1973).

    Article  CAS  Google Scholar 

  68. Mimoun, H.; Postel, M.; Casabianca, F.; Fischer, J.; Mitschler, A. Inorg. Chem., 21, 1303–06 (1982).

    Article  CAS  Google Scholar 

  69. Miksztal, A. R.; Valentine, J. S. Inorg. Chem., 23(22), 3548–52 (1984).

    Article  CAS  Google Scholar 

  70. Sligar, S. G.; Murray, R. I., In “Cytochrome P-450: Structure, Mechanism, and Biochemistry”; Ortiz de Montellano, P.R.; Editor; (Plenum Press: New York, N. Y.), (1986); p 429–504.

    Google Scholar 

  71. Groves, J. T.; Watanabe, Y.; McMurry, T. J. J. Am. Chem. Soc., 105(17), 4489–90 (1983).

    Article  CAS  Google Scholar 

  72. Groves, J. T.; Watanabe, Y. Inorg. Chem., 25(27), 4808–10 (1986).

    Article  CAS  Google Scholar 

  73. Hamilton, G. A. J. Am. Chem. Soc., 86, 3390–91 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Valentine, J.S., Burstyn, J.N., Margerum, L.D. (1988). Mechanisms of Dioxygen Activation in Metal-Containing Monooxygenases: Enzymes and Model Systems. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics