Abstract

Mobile, phagocytoeing cells were first observed in starfish larvae in 1882 by Elie Metchnikoff, who was subsequently able to demonstrate their central role in host defense against infection ln animals. In recognition of the significance of his discoveries, Metchnikoff was awarded the Nobel Prize in Physiology or Medicine in 1908. Since that time our understanding of the physiology and biochemistry of leukocytic cells has increased enormously; however, the microbicidal toxins produced by leukocytes and their disinfection mechanisms have remained poorly characterized, and are correspondingly the subject of increasing attention of medical researchers and biochemists.

Keywords

Hydrolysis Toxicity Respiration Aldehyde Chlorine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a comprehensive review, see: S. J. Klebanoff and R. A. Clark, “The Neutrophil: Function and Clinical Disorders,” North-Holland, Amsterdam (1978).Google Scholar
  2. 2.
    B. Dewald, M. Baggiolini, J. T. Curnutte, and B. M. Babior, Subcellular localization of the superoxide-forming enzyme in human neutrophils, J. Clin Invest. 63:21 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Yamaguchi, K. SatoK. Shimada, and K. Kakinuma, Subcellular localization of O2generating enzyme in guinea pig polymorphonuclear leukocytes; fractionation of subcellular particles by using a Percoll density gradient, J. Biochem. 91:31 (1982).PubMedGoogle Scholar
  4. 4.
    J. A. Badwey and M. L. Karnovsky, Production of superoxide by phagocytic leukocytes: a paradigm for stimulus-response phenomena, Curr. Top. Cell Regul. 28:183 (1986).PubMedGoogle Scholar
  5. 5.
    S. S. Sibbett and J. K. Hurst, Structural analysis of myeloperoxidase by resonance Raman spectroscopy, Biochemistry 23:3007 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Schultz and K. Kaminker, Myeloperoxidase of the leukocyte of normal human blood. I. Content and localization, Arch. Biochem. Biophys. 96:465 (1962).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Elsbach, On the interaction between phagocytes and micro-organisms, N. Engl. J. Med. 16:846 (1973).Google Scholar
  8. 8.
    A. W. Segal, M. Geisow, R. Garcia, A. Harper, and R. Miller, The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH, Nature 290:406 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    Z. A. Cohn, The fate of bacteria within phagocytic cells I. The degradation of lsotopically labeled bacteria by polymorphonuclear leucocytes and macrophages, J. Exp. Med. 117:27 (1968).CrossRefGoogle Scholar
  10. 10.
    R. J. Selvaraj, B. B. Paul, R. R. Strauss, A. A. Jacobs, and A. J. Sbarra, Oxidative peptide cleavage and decarboxylation by the myeloperoxidase-hydrogen peroxide-chloride ion antimicrobial system, Infect. Immun. 9:255 (1974).PubMedGoogle Scholar
  11. 11.
    E. M. Ayoub and J. G. White, Intraphagocytic degradation of Group A streptococci: Electron microscope studies, J. Bacteriol. 98:728 (1969).PubMedGoogle Scholar
  12. 12.
    G. L. Mandell, Bactericidal activity of aerobic and anaerobic polymorphonuclear leukocytes, Infect. Immun. 9:337 (1974).PubMedGoogle Scholar
  13. 13.
    R. K. Root and J. A. Metealf, Hydrogen peroxide release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of hydrogen peroxide: Studies with normal and cytochalasin B-treated cells, J. Clin. Invest. 60:1266 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    T. R. Green and D. E. Wu, The NADPH:O2oxidoreductase of human neutrophils. Stoichiometry of univalent and divalent reduction of O2, J. Biol. Chem. 261:6010 (1986).PubMedGoogle Scholar
  15. 15.
    T. R. Green and K. L. Pratt, A reassessment of product specificity of the NADPH:02 oxidoreductase of human neutrophils, Biochem. Biophys. Res. Communf 142:213 (1987).CrossRefGoogle Scholar
  16. 16.
    R. T. Briggs, D. B. Drath, M. L. Karnovsky, and M. J. Karnovsky, Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method, J. Cell Biol. 67:566 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    R. T. Briggs, J. M. Robinson, M. L. Karnovsky, and M. J. Karnovsky, Superoxide production by polymorphonuclear leukocytes. A cytochemical approach, Histochemistry 84:371 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    T. R. Green, R. E. Schaefer, and M. T. Makler, Orientation of the NADPH-dependent superoxide generating oxidoreductase on the outer membrane of human PMN’s, Biochem. Biophys. Res. Commun. 94:262 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    G. L. Bablor, R. E. Rosin, B. J. McMurrich, W. A. Peters, and B. M. Babior, Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil, J. Clin. Invest. 67:1724 (1981).CrossRefGoogle Scholar
  20. 20.
    J. E. Harrison and J. Schultz, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251:1371 (1976).PubMedGoogle Scholar
  21. 21.
    J. K. Hurst, P. A. G. Carr, F. E. Hovis, and R. J. Richardson, Hydrogen peroxide oxidation by chlorine compounds. Reaction dynamics and singlet oxygen formation, Inorg. Chem. 20:2435 (1981).CrossRefGoogle Scholar
  22. 22.
    A. M. Harper, M. F. Chaplin, and A. W. Segal, Cytochrome b from human neutrophils is a glycoprotein, Biochem. J. 227:783 (1985).PubMedGoogle Scholar
  23. 23.
    A. R. Cross, F. K. Higson, O. T. G. Jones, A. M. Harper, and A. W. Segal, The enzymic reduction and kinetics of oxidation of cytochrome b-245 neutrophils, Biochem. J. 204:479 (1982).PubMedGoogle Scholar
  24. 24.
    A. R. Cross, O. T. G. Jones, A. M. Harper, and A. W. Segal, Oxidationreduction properties of the cytochrome b found in the plasmamembrane fraction of human neutrophils, Biochem. J. 194:599 (1981).PubMedGoogle Scholar
  25. 25.
    A. R. Cross, J. F. Parkinson, and O. T. G. Jones, Mechanism of the superoxide-producing oxidase of neutrophils. O2- is necessary for the fast reduction of cytochrome b-245 by NADPH, Biochem. J. 226:881 (1985).PubMedGoogle Scholar
  26. 26.
    A. W. Segal and O. T. G. Jones, Novel cytochrome b system in phagocytic vacuoles of human granulocytes, Nature (London) 276:515 (1978).CrossRefGoogle Scholar
  27. 27.
    A. W. Segal and O. T. G. Jones, Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease, FEBS Lett. 110:111 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    D. R. Light, C. Walsh, A. M. O’Callaghan, E. J. Goetzl, and A. I. Tauber, Characteristics of cofactor requirement for the superoxidegenerating NADPH oxidase of human polymorphonuclear leukocytes, Biochemistry 20:1468 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Kakinuma, M. Kaneda, T. Chiba, and T. Ohnishi, Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes. Redox potentials of the flavin and its participation in NADPH oxidase, J. Biol. Chem. 261:9426 (1986).PubMedGoogle Scholar
  30. 30.
    T. A. Gabig and B. A. Lefker, Catalytic properties of the resolved flavoprotein and cytochrome b components of the NADPH dependent O2 generating oxidase from human neutrophils, Biochem. Biophys. Res.Commun. 118:430 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    D. R. Crawford and D. L. Schneider, Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257:6662 (1982).PubMedGoogle Scholar
  32. 32.
    C. C. Cunningham, L. R. De Chatelet, P. I. Spach, J. W. Parce, M. J. Thomas, C. J. Lees, and P. S. Shirley, Identification and quantitation of electron transport components in human polymorphonuclear neutrophils, Biochim. Biophys. Acta 682:430 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    T. G. Gabig and B. A. Lefker, Activation of human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559 J. Biol. Chem. 260:3991 (1985).PubMedGoogle Scholar
  34. 34.
    A. R. Cross, O. T. G. Jones, R. Garcia, and A. W. Segal, The subcellular localization of ubiquinone in human neutrophils, Biochem. J. 216:765 (1983).PubMedGoogle Scholar
  35. 35.
    R. Lutter, R. van Zwieten, R. S. Weening, M. N. Hamers, and D. Roos, Cytochrome b, flavins, and ubiquinone-50 in enucleated human neutrophils (polymorphonuclear leukocyte cytoplasts), J. Biol. Chem. 259:9603 (1984).PubMedGoogle Scholar
  36. 36.
    G. A. Glass, D. M. DeLisle, P. de Togni, T. G. Gabig, B. H. Magee, M. Markert, and B. M. Babior, The respiratory burst oxidase of human neutrophils. Further studies of the purified enzyme, J. Biol. Chem. 261:13247 (1986).PubMedGoogle Scholar
  37. 37.
    P. F. Urban and M. Klingenberg, Redox potentials of ubiquinone and cytochrome in the respiratory chain, Eur. J. Biochem. 9:510 (1969).CrossRefGoogle Scholar
  38. 38.
    P. Bellavite, O. T. G. Jones, A. R. Cross, E. Papini, and P. Rossi, Composition of partially purified NADPH oxidase from pig neutrophils, Biochem. J. 223:639 (1984).PubMedGoogle Scholar
  39. 39.
    A. G. Segal, P. G. Heyworth, S. Cockcroft, and M. M. Barrowman, Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a M -44,000 protein, Nature (London) 316:547 (1985).CrossRefGoogle Scholar
  40. 40.
    P. G. Heyworth and A. W. Segal, Further evidence for the involvement of a phosphoprotein in the respiratory burst oxidase from human neutrophils, Biochem. J., 239:723 (1986).PubMedGoogle Scholar
  41. 41.
    T. Hayakawa, K. Suzuki, S. Suzuki, P. C. Andrews, and B. M. Babior, A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease, J. Biol. Chem. 261:9109 (1986).PubMedGoogle Scholar
  42. 42.
    J. K. Hurst, J. M. Albrich, T. R. Green, H. Rosen and S. Klebanoff, Myeloperoxidase-dependent fluorescein chlorination by stimulated neutrophils, J. Biol. Chem. 259:4812 (1984).PubMedGoogle Scholar
  43. 43.
    M. B. Grisham, M. M. Jefferson, D. F. Melton, and E. L. Thomas, Chlorination of endogenous amines by Isolated neutrophils: Ammoniadependent bactericidal, cytotoxic, and cytolytic activities of the chloramines, J. Biol. Chem. 259:10404 (1984).PubMedGoogle Scholar
  44. 44.
    C. S. Foote, T. E. Goyne, and R. I. Lehrer, Assessment of chlorination by human neutrophils, Nature 301:715 (1983).PubMedCrossRefGoogle Scholar
  45. 45.
    S. J. Weiss, R. Klein, A. Slivka, and M. Wei, Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation, J. Clin. Invest. 70:598 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    J. M. Zglinczynski and T. Stelmaszynska, Chlorinating ability of human phagocytizing leukocytes, Eur. J. Biochem. 56:157 (1975).CrossRefGoogle Scholar
  47. 47.
    C. S. Foote, Mechanisms of photosensitized oxidation, Science 162:963 (1968).PubMedCrossRefGoogle Scholar
  48. 48.
    R. C. Allen, Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leukocyte in the phenomenon of electronic excitation, Biochem. Biophys. Res. Commun. 63:675 (1975).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Rosen and S. J. Klebanoff, Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 252:4803 (1977).PubMedGoogle Scholar
  50. 50.
    A. M. Held, D. J. Halko, and J. K. Hurst, Mechanisms of chlorine oxidation of hydrogen peroxide, J. Am. Chem. Soc. 100:5732 (1978).CrossRefGoogle Scholar
  51. 51.
    E. Sander and W. P. Jencks, General acid and base catalysis of the reversible addition of hydrogen peroxide to aldehydes, J. Am. Chem. Soc. 90:3817 (1968).CrossRefGoogle Scholar
  52. 52.
    J. M. Albrich, C. A. McCarthy, and J. K. Hurst, Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase, Proc. Natl. Acad. Sci. USA 78:210 (1981).PubMedCrossRefGoogle Scholar
  53. 53.
    A. M. Held and J. K. Hurst, Ambiguity associated with use of singlet oxygen trapping agents in myeloperoxidase-catalyzed reactions, Biochem. Biophys. Res. Commun. 81:878 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    B. D. Cheson, R. L. Christensen, R. Sperline, B. E. Kohler, and B. M. Babior, The origin of the chemiluminescence of phagocytosing granulocytes, J. Clin. Invest. 58:789 (1976).PubMedCrossRefGoogle Scholar
  55. 55.
    J. C. Morris, Kinetics of reactions between aqueous chlorine and nitrogen compounds, In: “Principles and Applications of Water Chemistry,” S.D. Faust and J.V. Hunter, eds., Wiley, New York (1967).Google Scholar
  56. 56.
    B. B. Paul, A. A. Jacobs, R. R. Strauss and A. J. Sbarra, Role of the phagocyte In host-parasite Interactions. XXIV. Aldehyde generation by the myeloperoxidase-hydrogen peroxide antimicrobial system: A possible in vivo mechanism of action, Infect. Immun. 2:414 (1970).PubMedGoogle Scholar
  57. 57.
    E. L. Thomas, Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: Effect of exogenous amines on antibacterial action against Escherichia coli, Infect. Immun. 25:110 (1979).PubMedGoogle Scholar
  58. 58.
    J. M. Albrich, J. H. Gilbaugh III, K. B. Callahan, and J. K. Hurst, Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coll, J. Clin. Invest. 78:177 (1986).PubMedCrossRefGoogle Scholar
  59. 59.
    W. C. Barrette, Jr., J. M. Albrich, and J. K. Hurst, Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli, manuscript submitted.Google Scholar
  60. 60.
    E. L. Thomas, Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli, Infect. Immun. 23:522 (1979).PubMedGoogle Scholar
  61. 61.
    J. M. Albrich and J. K. Hurst, Oxidative inactivation of Escherichia coli by hypochlorous acid. Rates and differentiation of respiratory from other reaction sites, FEBS Lett. 144:157 (1982).PubMedCrossRefGoogle Scholar
  62. 62.
    W. C. Barrette, Jr., and J. K. Hurst, unpublished observations.Google Scholar
  63. 63.
    F. M. Harold, “The Vital Force: A Study of Bioenergetics,” W. H. Freeman, New York (1986).Google Scholar
  64. 64.
    C. J. Knowles, Microbial metabolic regulation by adenine nucleotide pools, Symp. Soc. Gen. Microbiol. 27:241 (1977).Google Scholar
  65. 65.
    W. Epstein and L. Lalmins, Potassium transport in Escherichia coli: Diverse systems with common control by osmotic forces, Trends Biochem. Sci. 5:21 (1980).CrossRefGoogle Scholar
  66. 66.
    S. J. Klebanoff and C. B. Hamon, Role of myeloperoxidase-mediated anti-microbial systems in intact leukocytes, J. Reticuloendothel. Soc. 12:170 (1972).PubMedGoogle Scholar
  67. 67.
    P. Elsbach and J. Weiss, A reevaluation of the roles of the oxygendependent and oxygen-independent microbicidal systems of phagocytes, Rev. Infect. Pis. 5:843 (1983).CrossRefGoogle Scholar
  68. 68a.
    J. A. Fee, Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7:84 (1982)CrossRefGoogle Scholar
  69. 68b.
    B. Halliwell, Superoxide and superoxide-dependent formation of hydroxyl radicals are Important in oxygen toxicity, Trends Biochem. Sci. 7:271 (1982).Google Scholar
  70. 69.
    D. T. Sawyer and J. S. Valentine, How super is superoxide? Acc. Chem. Res. 14:393 (1981).CrossRefGoogle Scholar
  71. 70.
    R. B Johnston, Jr., B. B. Keele, Jr., H. P. Misra, J. E. Lehmeyer, L. S. Webb, R. L. Baehner, and K. V. Rajagopalan, The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357 (1975).PubMedCrossRefGoogle Scholar
  72. 71.
    M. R. Green, H. A. O. Hill, M. J. Okolow-Zubkowska, and A. W. Segal, The production of hydroxyl and superoxide radicals by stimulated human neutrophils—measurements by epr spectroscopy, FEBS Lett. 100:23 (1979).PubMedCrossRefGoogle Scholar
  73. 72.
    H. Rosen and S. J. Klebanoff, Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy, J. Clin. Invest. 64:1725 (1979).PubMedCrossRefGoogle Scholar
  74. 73.
    B. E. Britigan, G. M. Rosen, Y. Chai, and M. S. Cohen, Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry, J. Biol. Chem. 261:4426 (1986).PubMedGoogle Scholar
  75. 74.
    S. J. Weiss, P. K. Rustagi, and A. F. LoBuglio, Human granulocyte generation of hydroxyl radical, J. Exp. Med. 147:316 (1978).PubMedCrossRefGoogle Scholar
  76. 75.
    S. J. Klebanoff and H. Rosen, The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes, Ciba Found. Symp. 65:263 (1979).Google Scholar
  77. 76.
    S. J. Klebanoff and H. Rosen, Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase, J. Exp. Med. 148:490 (1978).PubMedCrossRefGoogle Scholar
  78. 77.
    T. Navok and M. Chevion, Transition metals mediate enzymatic inactivation by favism-inducing agents, Biochem. Biophys. Res. Commun. 122:297 (1984).PubMedCrossRefGoogle Scholar
  79. 78.
    E. Shinar, T. Navok, and M. Chevion, The analogous mechanism of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper, J. Biol. Chem. 258:14778 (1983).PubMedGoogle Scholar
  80. 79.
    A. Samuni, J. Aronovitch, D. Godinger, M. Chevion, and G. Czapskl, On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism, Eur. J. Biochem. 137:119 (1983).PubMedCrossRefGoogle Scholar
  81. 80.
    A. Samuni, M. Chevion, and G. Czapski, Unusual copper-induced sensitization of the biological damage due to superoxide radicals, J. Biol. Chem. 256:12632 (1981).PubMedGoogle Scholar
  82. 81.
    G. J. McClune and J. A. Fee, Stopped flow spectrophotometrie observation of superoxide dlsmutatlon in aqueous solution, FEBS Lett. 67:294 (1976).PubMedCrossRefGoogle Scholar
  83. 82.
    D. A. Rowley and B. Halliwell, Superoxide-dependent and ascorbatedependent formation of hydroxyl radicals in the presence of copper salts: A physiologically significant reaction? Arch. Biochem. Biophys. 225:279 (1983), and references therein.PubMedCrossRefGoogle Scholar
  84. 83.
    J. E. Repine, R. B. Fox, and E. M. Berger, Hydrogen peroxide kills Staphylococcus aureus by reacting with iron to form hydroxyl radical, J. Biol. Chem. 256:7094 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • James K. Hurst
    • 1
  1. 1.Department of Chemical and Biological SciencesOregon Graduate CenterBeavertonUSA

Personalised recommendations