New Nonlinear Organic Crystals for Ultrafast Infra-red Optical Processing


Based on now well tried “molecular engineering” groundrules /l, 2/, the “molecular diode”, where an electondonor and an electron acceptor group are linked via a it conjugated system, has emerged as a key-concept in quadratic nonlinear optics. The most compact packing of such microscopic units is achieved in molecular single crystals where molecules are arranged in translationnaly invariant non-centrosymetric lattices /3/. Such type of molecular organization played a seminal role at the early stage of research in nonlinear organic materials, providing ideal model systems to relate crystalline and molecular properties via an oriented gas type of description /4/. In terms of optimal active units packing density, the single crystalline structure, despite certain problems, still remains attractive as compared to other types of organization where a lesser statistical degree of orientation is achieved by doping or functionnalizing a given host structure and subsequent poling and stabilization /5,6/. However, in the latter approach, one may be willing to pay the price in terms of active units dilution, so as to take advantage of the possible qualities of the host system such as mechanical robustness in liquid crystalline polymers, or favourable optical propagation conditions in such simple polymers as PMMA.


Pump Beam Parametric Amplification Ground State Dipole Moment Single Crystalline Structure Idle Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Nonlinear Optical Properties of Symp.Ser.233 Edit. D.J. WilliamsGoogle Scholar
  2. /2/.
    “Nonlinear Optical Properties ofOrganic Molecules and Polymers”, ACS (A.C.S., Washington, 1983) Organic Molecules and Crystals",2 vols., series : Quantum Electronics, Principles and Applications. Edits. D.S. Chemla and J. Zyss. (Academic Press, Orlando, 1987).Google Scholar
  3. /3/.
    “Molecular Crystals and Molecules” A.I. Kitaigorodsky (Academic Press, Orlando, 1973).Google Scholar
  4. /4/.
    D.S. Chemla, J.L. Oudar and J. Jerphagnon, Phys. Rev.B12, 4534 (1975).CrossRefGoogle Scholar
  5. /5/.
    “Nonlinear Optical Process in Organic Materials” feature issue of J. Opt. Soc. Am. B 4(6) june 1987. See for example Singer et al. for doped PMMA and Tompkin et al. for dye containing glassGoogle Scholar
  6. /6/.
    G.R. Meredith et al. p.109 in Ref. /I/ and P. le Barny, G. Ravaux, J.C. Dubois, J.P. Parneix, R. Njeumo, C. Legrand and A.M. Levelut Proceeding of SPIE "Molecular and Polymeric Materials, Fundamentals and Applications", vol. 682, 56 (1986).Google Scholar
  7. /7/.
    G.I. Stegeman et al. p. 31 in “Nonlinear Optics : Materials Devices”, Springer Proceeding in Physics 7, Edits. C. Flytzanis and J.L. Oudar (Springer Verlag, Berlin, 1986).Google Scholar
  8. /8/.
    J. Zyss, J. Mol. Electron 1, 25 (1985).Google Scholar
  9. /9/.
    I. Ledoux, D. Josse, P. Vidakovic and J. Zyss, Opt.Eng 25, 202 (1985)Google Scholar
  10. /10/.
    B.K. Nayar p. 142 in Ref. /7/.Google Scholar
  11. /11/.
    P.V. Vidakovic, M. Coquillay and F. Salin in Ref. /5/.Google Scholar
  12. /12/.
    P.V. Vidakovic, J. Badan R. Hierle and J. Zyss, IQEC-84, Postdeadline Commun. PD-C5-1.Google Scholar
  13. /13/.
    “Solid-State Laser Engineering”, W. Koechner, Springer Series in Optical Sciences (Springer Verlag, New-York, 1976).Google Scholar
  14. /14/.
    J. Zyss, J.F. Nicoud and M. Coquillay, J. Chem.Phys. (81), 4160 (1984)CrossRefGoogle Scholar
  15. /15/.
    M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J.F. Nicoud, and J.O. Morley in Ref.5.Google Scholar
  16. /16/.
    J. Zyss and JL. Oudar, Phys. Rev. A26, 2028 (1982).CrossRefGoogle Scholar
  17. /17/.
    D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.L. Oudar and J. Zyss, Appl. Phys. lett 49 (13), 761 (1986).CrossRefGoogle Scholar
  18. /18/.
    G. Hauchercorne, F. Kerherve and G. Mayer, J. Phys. 32, 47 (1971).CrossRefGoogle Scholar
  19. /19a/.
    I. Ledoux and J. Zyss, Chem. Phys. 73, 203 (1982)CrossRefGoogle Scholar
  20. /19b/.
    J. Zyss and G. Berthier, J. Chem Phys. 77, 365 (1982).CrossRefGoogle Scholar
  21. /20/.
    K.D. Singer and F. Garito, J. Chem. Phys. 75, 3752 (1981).CrossRefGoogle Scholar
  22. /21/.
    J.L. Oudar, J. Chem. Phys. 67, 446 (1977).CrossRefGoogle Scholar
  23. /22/.
    J.F. Ward and C.K. Miller, Phys. Rev A 19, 826 (1979).CrossRefGoogle Scholar
  24. /23/.
    M. Barzoukas, D. Josse and J. Zyss and F. Kajzar to appear in the Proceedings of the MRS fall meeting (dec. 1987).Google Scholar
  25. /24/.
    F. Kajzar, I. Ledoux and J. Zyss, to be published in Phys. Rev. A.Google Scholar
  26. /25/.
    M.L. Shand and R.R. Chance p. 187 in Ref. /I/ and R.R. Chance in this book.Google Scholar
  27. /26/.
    H.D. Cohen and C.C.J. Roothan, J. Chem. Phys. 43, 534 (1965).Google Scholar
  28. /27/.
    J. Zyss, J. Chem. Phys. 70, 3333 (1979).CrossRefGoogle Scholar
  29. /28/.
    J. Zyss, J. Chem. Phys. 70, 3341 (1979).CrossRefGoogle Scholar
  30. /29/.
    J. Zyss, J. Chem. Phys. 71, 909 (1979).CrossRefGoogle Scholar
  31. /30/.
    S.J. Lalama and A.F. Garito, Phys. Rev. A20, 1179 (1979).CrossRefGoogle Scholar
  32. /31a/.
    V.J. Docherty, D. Pugh and J.O. Morley J. Chem. Soc. Faraday Trans. 2 81, 1179 (1985).CrossRefGoogle Scholar
  33. /31b/.
    J.O. Morley, V.J. Docherty and D. Pugh to be published in J. Chem. Soc., Perkin Trans, in the press (Part I, Part II, Part III).Google Scholar
  34. /32/.
    E.F. Mc Intyre and H.F. Hameka, J. Chem.Phys. 69, 4814 (1978) and references therein.Google Scholar
  35. /33/.
    C.W. Dirk, R.J. Twieg and G. WagniSre, J. Am. Chem. Soc. 108, 5387 (1986).CrossRefGoogle Scholar
  36. /34/.
    H. Sekino and R.J. Bartlett, J. Chem. Phys. 85, 976 (1986).Google Scholar
  37. /35/.
    J.A. Pople, J.W. Mclver and N.S. Ostlund, J. Chem. Phys.49, 2960 (1986).CrossRefGoogle Scholar
  38. /36/.
    S. Tomaru, S. Zembutsu, M. Kawachi and M. Kobayashi, J. Chem. Soc., Chem. Commun., 1207 (1984).Google Scholar
  39. /37/.
    J.F. Nicoud and R.J. Twieg in Ref. /2/ p.227 in vol. 1, pp. 221 and 255 in vol. 2.Google Scholar
  40. /38/.
    J.L. Oudar, J. Chem. Phys. 67, 446 (1977).CrossRefGoogle Scholar
  41. /39/.
    J.L. Oudar and J. Zyss, Phys. Rev. A 26, 2076 (1982).CrossRefGoogle Scholar
  42. /40/.
    "Atlas of Spectral Data and Physical Constants for Organic Compounds" 2nd Edition, eds. J.G. Grasselli and W.M. Ritchey (CRC Press, Cleveland, 1975).Google Scholar
  43. /41/.
    M. Sigelle and Hierle, J. Appl. Phys. 52, 4199 (1981).CrossRefGoogle Scholar
  44. /42/.
    J. Zyss, D.S. Chemla and J.F. Nicoud, J. Chem. Phys. 74, 4800 (1981).CrossRefGoogle Scholar
  45. /43/.
    A.R. Katritzky, E.W. Randall and L.E. Sutton, J.Chem.Soc., 1769 (1957)Google Scholar
  46. /44/.
    R.J. Twieg and C.W. Dirk, J. Chem. Phys. 85, 3537 (1986).CrossRefGoogle Scholar
  47. /45/.
    B.F. Levine, C.G. Bethea, C.G. Thurmond, C.D. Lynch and J.L. Bernstein, J.Appl. Phys. 50, 2523 (1979).CrossRefGoogle Scholar
  48. /46/.
    I. Ledoux, J. Zyss, A. Migus, J. Etchepare, G. Grillon and A. Antonet-ti, Appl. Phys. Lett. 48, 1564 (1986).CrossRefGoogle Scholar
  49. /47/.
    I. Ledoux, J. Badan, J. Zyss, A. Migus, D. Hulin, J. Etchepare, G. Grillon and A. Antonetti, in Ref. /5/.Google Scholar
  50. /48/.
    J. Zyss, I. Ledoux, J. Badan and J.L. Oudar to be published in the "Revue de Physique Applique".Google Scholar
  51. /49/.
    J. Zyss, I. Ledoux, R. Hierle, R. Raj, J.L. Oudar, IEEE J. Quantum Electron. QE 21, 1286 (1985).CrossRefGoogle Scholar
  52. /50/.
    J.L. Oudar and R. Hierle, J. Appl. Phys. 48, 2699 (1977),CrossRefGoogle Scholar
  53. /51/.
    J.L. Oudar and M. Sigelles private communication reported in Ref. /2/ vol. 1 p. 149 (Fig. 32).Google Scholar
  54. /52/.
    J. Zyss and D.S. Chemla p. 23 in Ref. /2/, vol. 1.Google Scholar
  55. /53/.
    "Quantum Electronics" A. Yariv (Wiley, New-York, 1975).Google Scholar
  56. /54/.
    see B.K. Nayar in this book and private communication.Google Scholar
  57. /55/.
    O.A. Aktsipetrov, N.N. Akhmediev, E.D. Mishina and V.R. Novak, JETP lett. 37, 207 (1983).Google Scholar
  58. /56/.
    I.R. Girling, N.A. Cade, P.V. Kolinsky, J.D. Earls, G.H. Gross and I.R. Peterson, Thin Solid Films 132, 101 (1985) and Refs. therein.Google Scholar
  59. /57/.
    I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R.A. Hann, P.F. Gordon, B.D. Bothwell, S.K. Gupta, S. Allen, P. Robin, E. Chastaing and J.C. Dubois, Europhys. Lett. 3, 803 (1987).CrossRefGoogle Scholar
  60. /58/.
    F. Kajzar, J. Messier, J. Zyss and I. Ledoux, Opt. Commun. 45, 133 (1983).CrossRefGoogle Scholar
  61. /59/.
    K.D. Singer, M.G. Kuzyk and J.E. Sohn in Ref. /5/ and K.D. Singer et al. in this book.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. Zyss
    • 1
  1. 1.CNET — Laboratoire de Bagneux (LA CNRS 250)BagneuxFrance

Personalised recommendations