Skip to main content

Extracellular Matrix Effects on Mammary Cell Behavior

  • Chapter
Cellular and Molecular Biology of Mammary Cancer

Abstract

Developmental biologists have long recognized that the extracellular matrix (ECM) plays a vital role in various developmental processes such as tissue morphogenesis and cytodifferentiation (1,2,3). Expression of the proliferative, morphogenetic and functional potentialities of the mammary epitheliumin vivo and in culture are clearly influenced by the ECM (4,5). The mechanistic details of how the ECM affects mammary epithelial cell behavior remain to be defined. As the ECM supports the mammary epithelium in vivo includes both acellular and cellular domains, ECM-mediated effects are likely to include interactions between different acellular ECM components, between cells and acellular ECM components and between different cell types. Additionally, such interactions must be coupled to the hormonal and growth factor requirements known to exist for expression of the mammary cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hay, E.D. Role of basement membranes in development and differentiation.In: N.A. Kefalides (ed.), Biology and Chemistry of Basement Membranes, pp. 119–136. New York: Academic Press, 1978.

    Google Scholar 

  2. Reddi, A.H. Perspectives in the role of extracellular matrix in differentiation and morphogenesis. In: W. Anderson and W. Sadler (eds.), Perspectives in Differentiation and Hypertrophy, pp. 121–133, Amsterdam: Elsevier Science Publishers, 1982.

    Google Scholar 

  3. Hay, E.D. Cell and extracellular matrix: Their organization and mutual dependence. Modern Cell Biol. 2: 509– 548, 1983.

    Google Scholar 

  4. Bernfield, M.R. Organization and remodeling of the extracellular matrix in morphogenesis.In: T.G. Connelly, L.L. Brinkley, and B.M. Carlson (eds.), Morphogenesis and Pattern Formation, pp. 139–162, New York Raven Press, 1981.

    Google Scholar 

  5. Bissell, M.J., Hall, H.G., and Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99: 31–68, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Emerman, J.T. and Pitelka, D.R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes.In Vitro13: 316–328, 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Emerman, J.T., Enami, J., Pitelka, D.R. and Nandi, S. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. USA 74: 4466–4470, 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Yang, J., Richards, J., Bowman, P., Guzman, R., Enami, J., McCormick, K., Hamamoto, S., Pitelka, D. and Nandi, S. Sustained growth and three-dimensional organization of primary tumor epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 76: 3401–3405, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, J., Richards, J., Guzman, R., Imagawa, W. and Nandi, S. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 77: 2088–2092, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Wicha, M.S., Lowrie, G., Kohn, E., Bagavandoss, P. and Mahn, T. Extracellular matrix promotes mammary epithelial growth and differentiationin vitro. Proc. Natl. Acad. Sci. USA 79: 3213–3217, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Wicha, M.S. Growth and differentiation of rat mammary epithelium on mammary gland extracellular matrix. In: S. Hawkes and J.L. Wang (eds.), Extracellular Matrix, pp. 309–314, New York, Academic Press, 1982.

    Google Scholar 

  12. Blum, J.L. and Wicha, M.S. Role of extracellular matrix in mammary growth and differentiation. J. Cell Biol. 99: 159a, 1984.

    Article  Google Scholar 

  13. Bissel, M.JK., Lee, E.Y-H, Li, M-L., Chen, L.H., Hall, H.G. Role of extracellular matrix and hormones in modulation of tissue-specific functions in culture: Mammary gland as a model for endocrine sensitive tissues. In: The Second NIADKK Symposium on the Study of Benign Prostatic Hyperplasia. Washington, D.C., U.S. Government Printing Office, in press.

    Google Scholar 

  14. Li, M., Chen, L-H., Hatier, C. and Bissell, M.J. Tissue-specific regulation of caseins and transferrin in a mouse mammary epithelial cell line. J. Cell Biol. 101: 260a, 1985.

    Google Scholar 

  15. Levine, J.F. and Stockdale, F.E. Cell-cell interactions promote mammary epithelial cell differentiation. J. Cell Biol. 100: 1415–1422, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Haslam, S.Z. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogenin vitro. Cancer Res. 46: 310–316, 1986.

    PubMed  CAS  Google Scholar 

  17. Vonderhaar, B.K. Hormones and growth factors in mammary gland development. In: C.M. Veneziale (ed.), Control of Cell Growth and Proliferation, pp. 11–33, New York, Van Nostrand, Reinhold and Co., 1984.

    Google Scholar 

  18. Vonderhaar, B.K. and Bhattacharjee, M. The mammary gland: A model for hormonal control of differentiation and preneoplasia.In: E. Mihich (ed.), Biological Responses in Cancer: Plenum Publishing Co., in press.

    Google Scholar 

  19. Michalopoulos, G. and Pitot, H.C. Primary cultures of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94: 70–78, 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Katiyar, V.N., Enami, J. and Nandi, S. Effect of polypeptide hormones on stimulation of casein secretion by mouse mammary epithelial cells grown on floating gels.In Vitro14: 771–774, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Shannon, J.M. and Pitelka, D.R. The influence of cell shape on the induction of functional differentiation in mouse mammary cellsin vitro.In Vitro17: 1016–1028, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Bissell, M.J. The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. Int. Rev. Cytol. 70: 27–100, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Parry, G., Lee, E. and Bissell, M.J. Modulation of the differentiated phenotype of cultured mouse mammary epithelial cells by collagen substrata.In: S. Hawkes and J.L. Wang (eds.), Extracellular Matrix, 303–308, New York, Academic Press, 1982.

    Google Scholar 

  24. Lee, E.Y-H., Parry, G. and Bissell, M.J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98: 146–155, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, E.Y-H., Lee, W-H., Kaetzel, C.S., Parry, G. and Bissell, M.J. Interaction of mouse mammary epithelial cells with collagen substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82: 1419– 1423, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Rocha, V., Ringo, D.L. and Read, D.B. Casein production during differentiation of mammary epithelial cells in collagen gel culture. Exp. Cell Res. 159: 201–210, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Hennighausen, L.G. and Sippel, A.E. Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur. J. Biochem. 125: 131–141, 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Brodbeck, U., Denton, W.L., Tanahashi, N. and Ebner, K.E. The isolation and identification of the B protein of lactose synthetase as alpha-lactalbumin. J. Biol. Chem. 242: 1391–1397, 1967.

    PubMed  CAS  Google Scholar 

  29. Piletz, J.E., Heinlen, M. and Ganschow, R.E. Biochemical characterization of a novel whey protein from murine milk. J. Biol. Chem. 256: 11509–11516, 1981.

    PubMed  CAS  Google Scholar 

  30. Bhattacharjee, M. and Vonderhaar, B.K. Purification and characterization of mouseα-lactalbumin from lactating mammary glands. Biochem. Biophys. Acta 755: 279–286, 1983.

    PubMed  CAS  Google Scholar 

  31. Larson, B.L. and Gillespie, D.C. Origin of the major specific proteins in milk. J. Biol. Chem. 227: 565–573, 1957.

    PubMed  CAS  Google Scholar 

  32. Soloff, M.S., Alexandora, M. and Fernstrom, M.J. Oxytocin receptors: Triggers for parturition and lactation? Science 204: 1313–1315, 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Durban, E.M., Medina, D. and Butel, J.S. Comparative analysis of casein synthesis during mammary cell differentiation in collagen and mammary gland developmentin vivo. Dev. Biol. 109: 288–298, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Haeuptle, M-T., Suard, Y.L.M., Bogenmann, E., Reggio, H., Racine, L. and Kraehenbuhl, J.P. Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture. J. Cell Biol. 96: 1425–1434, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Suard, Y.M.L., Haeuptle, M-T., Farmon, E. and Kraehenbulh, J-P. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell Biol. 96: 1435–1442, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Burwen, S.J. and Pitelka, D.R. Secretory function of lactating mouse mammary epithelial cells cultured on collagen gels. Exp. Cell Res. 126: 249–262, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Cline, P.R., Zamora, P.O. and Hosick, H.L. Morphology and lactose synthesis in tissue culture of mammary culture of mammary alveoli isolated from lactating mice. In Vitro 18: 694–702, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Durban, E.M., Butel, J.S., Bartek, J. and Taylor-Papadimitriou, J. The importance of matrix interactions and tissue topography for the growth and differentiation of mammary epithelial cellsin vitro.In: M.A. Rich, J.C. Hager, and JTaylor-Papadimitriou (eds.), Breast Cancer: Origins, Detection and Treatment, pp. 11–30, Boston, Martinus Nijhoff Publishing, 1986.

    Google Scholar 

  39. Wicha, M.S., Liotta, L.A., Garbisa, S. andKidwell, W.R. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp. Cell Res. 124: 181–190, 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Salomon, D.S., Liotta, L.A. and Kidwell, W.R. Differentiated response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium. Proc. Natl. Acad. Sci. USA 78: 382–386, 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Wicha, M.S., Liotta, L.A., Vonderhaar, B.K. andKidwell, W.R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev. Biol. 80: 253–266, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Richards, J., Pasco, D., Yang, J., Guzman, R. and Nandi, S. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Exp. Cell Res. 146: 1–14, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Richards, J., Hamamoto, S., Smith, S., Pasco, D., Guzman, R. and Nandi, S. Response of end bud cells from immature rat mammary gland to hormones when cultured in collagen gel. Exp. Cell Res. 147: 95–109, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. McGrath, M., Palmer, S. and Nandi, S. Differential response of normal rat mammary epithelial cells to mammogenic hormones and EGF. J. Cell Physiol. 125: 182–191, 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, J., Guzman, R., Richards, J., Jentoft, V., DeVault, M.R., Wellings, S.R. and Nandi, S. Primary culture of human mammary epithelial cells embedded in collagen gels. J. Natl. Cancer Inst. 65: 337–343, 1980.

    PubMed  CAS  Google Scholar 

  46. Foster, C.S., Smith, C.A., Dinsdale, E.A., Monaghan, P., and Neville, A.M. Human mammary gland morphogenesisin vitro: The growth and differentiation of normal breast epithelium in collagen gel cultures defined by electron microscopy, monoclonal antibodies, and autoradiography. Dev. Biol. 96: 197–216, 1983.

    Article  PubMed  CAS  Google Scholar 

  47. Imagawa, W., Tomooka, Y. and Nandi, S. Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. Proc. Natl. Acad. Sci. USA 79: 4074–4077, 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Van Bockymeer, F.M. and Martin, C.E. Measurement of cell proliferation and cell mediated contraction in 3-dimensional hydrated collagen matrices. J. Tissue Culture Methods 7: 163–167, 1982.

    Article  Google Scholar 

  49. Kidwell, W.R., Wicha, M.S., Salomon, D. and Liotta, L. Differential recognition of basement membrane collagen by normal and neoplastic mammary cells.In: C.M. McGrath, M.J. Brennan, M. Arich (eds.), Cell Biology of Breast Cancer, pp. 17–32, New York, Academic Press, 1980.

    Google Scholar 

  50. Richards, J., Guzman, R., Konrad, M., Yang, T. and Nandi, S. Growth of mouse mammary gland end buds cultured in a collagen gel matrix. Exp. Cell Res. 141: 433–443, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Ormerod, J.E., Warburton, M.J., Hughes, C., and Rudland, P.S. Synthesis of basement membrane proteins by rat mammary epithelial cells. Dev. Biol. 96: 269–275, 1983.

    Article  PubMed  CAS  Google Scholar 

  52. David, G. and Bernfield, M.R. Collagen reduces glycosamino glycan degradation by cultured mammary epithelial cells: Possible mechanism for basal lamina formation. Proc. Natl. Acad. Sci. USA 76: 786–790, 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Pamy, G., Lee, E.Y-H., Farson, D., Koral, M., Bissell, M.J. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Exp. Cell Res. 156: 487–499, 1985.

    Article  Google Scholar 

  54. Imagawa, W., Tomooka, Y., Hamamoto, S. and Nandi, S. Stimulation of mammary epithelial cell growthin vitro: Interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116: 1514–1524, 1985.

    Article  PubMed  CAS  Google Scholar 

  55. Liotta, L.A., Wicha, M.S., Foidart, J.M., Rennard, S.I., Garbisa, S. and Kidwell, W.R. Hormonal requirements for basement membrane collagen deposition by cultured rat mammary epithelium. Lab Invest. 41: 511–518, 1979.

    PubMed  CAS  Google Scholar 

  56. Imagawa, W., Bandyopadhyay, G., Spencer, M., Li, J. and Nandi, S. Regulation of mammary epithelial cell proliferation: Anin vitromouse mammary epithelial cell model system.In: M.A. Rich, J.C. Hager and J. Taylor-Papadimitriou (eds.), Breast Cancer: Origins, Detection, and Treatment, pp. 31–41, Boston, Martinus Nijhoff Publishing, 1986.

    Google Scholar 

  57. Lawler, E.M., Miller, F.R. and Heppner, G.H. Significance of three- dimensional growth patterns of mammary tissues in collagen gels.In Vitro19: 600–610, 1983.

    Article  PubMed  CAS  Google Scholar 

  58. Daniel, C.W., Berger, J.J., Strickland, P. and Garcia, R. Similar growth pattern of mouse mammary epithelium cultivated in collagen matrix,in vivoandin vitro. Dev. Biol. 104: 57–64, 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Richards, J., Hamamoto, S., Smith, S., Pasco, D., Guzman, R. and Nandi, S. Response of end bud cells from immature rat mammary gland to hormones when cultured in collagen gel. Exp. Cell Res. 147: 95–109, 1983.

    Article  PubMed  CAS  Google Scholar 

  60. Kawamura, K., Enami, J., Enami, S., Koezuka, M., Kohmoto, K. and Koga, M. Growth and morphogenesis of mouse mammary epithelial cells cultured in collagen gels. Proc. Japan Acad. 62: Ser. B: 5–8, 1986.

    Article  CAS  Google Scholar 

  61. Tonelli, Q.J. and Sorof, S. Induction of biochemical differentiation in three-dimensional collagen cultures of mammary epithelial cells from virgin mice. Differentiation 22: 195–200, 1982.

    Article  PubMed  CAS  Google Scholar 

  62. Flynn, D., Yang, J. and Nandi, S. Growth and differentiation of primary cultures of mouse mammary epithelium embedded in collagen gel. Differentiation 22: 191–194, 1982.

    Article  PubMed  CAS  Google Scholar 

  63. Danielson, K.G., Oborn, C.J., Durban, E.M., Butel, J.S. and Medina, D. An epithelial mouse mammary cell line exhibiting normal morphogenesisin vivoand functional differentiationin vitro. Proc. Natl. Acad. Sci. USA 81: 3756–3760, 1984.

    Article  PubMed  CAS  Google Scholar 

  64. Medina, D., Oborn, C.J., Kittrel, F.S. and Ullrich, R.L. Properties of mouse mammary epithelial cell lines characterized byin vivo transplantation andin vitro immunocytochemical methods. J. Natl. Cancer Inst. 76: 1986, in press.

    Google Scholar 

  65. Emerman, J.T. and Worth, A.J. Phenotypic stability of mouse mammary tumor cells cultured on collagen gels.In Vitro21: 49–56, 1985.

    CAS  Google Scholar 

  66. Johnson, M.L., Levy, J. and Rosen, J.M. Isolation and characterization of casein-producing and non-producing cell populations from 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinomas. Cancer Res. 43: 2199–2209, 1983.

    PubMed  CAS  Google Scholar 

  67. Johnson, M.L., Levy, J. and Rosen, J.M. Maintenance of milk proteingene expression in a subpopulation of 7,12-dimethylbenz(a)- anthracene-induced rat mammary carcinoma cells grown on attached collagen gels.In Vitro21: 439–444, 1985.

    CAS  Google Scholar 

  68. Supowit, S.C. and Rosen, J. Hormonal induction of casein gene expression limited to a small subpopulation of 7,12-dimethyl- benz(a)anthracene-induced mammary tumor cells. Cancer Res. 42: 1355–1360, 1982.

    PubMed  CAS  Google Scholar 

  69. Yang, J., Guzman, R., Richards, J. and Nandi, S. Primary culture of mouse mammary tumor epithelial cells embedded in collagen gel.In Vitro16: 502–506, 1980.

    Article  PubMed  CAS  Google Scholar 

  70. Guzman, R.C., Osborn, R.C., Richards, J.E. and Nandi, S. Effects of phorbal esters on normal and tumorous mouse mammary epithelial cells embedded in collagen gels. J. Natl. Cancer Inst. 71: 69–73, 1983.

    PubMed  CAS  Google Scholar 

  71. Richards, J., Guzman, R., Yang, J., Nandi, S. and Konrad, M. Chemical carcinogenesis of mammary epithelium in cell culture.In: C.M. McGrath, M.J. Brennan, M. Arich (eds.), Cell Biology of Breast Cancer, pp. 467–484, New York, Academic Press, 1980.

    Google Scholar 

  72. Asch, B.B., Kamat, B.R. and Burstein, N.A. Interactions of normal, dysplastic and malignant mammary epithelial cells with fibronectinin vivoandin vitro. Cancer Res. 41: 2115–2125, 1981.

    PubMed  CAS  Google Scholar 

  73. Liotta, L.A. Tumor invasion and metastases — Role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res. 46: 1–7, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Durban, E.M. (1987). Extracellular Matrix Effects on Mammary Cell Behavior. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics