Skip to main content

Current Concepts of Selenium and Mammary Tumorigenesis

  • Chapter
Cellular and Molecular Biology of Mammary Cancer

Abstract

The essentiality of selenium as a trace element was recognized in 1957 (1). On the biochemical level, selenium has long been known to have an antagonistic effect on lipid peroxidation. However, it was not until 1973 that the molecular basis of the antioxidant function of selenium was established. The milestone publication from Hoekstra’s laboratory reported that glutathione peroxidase, an enzyme that metabolizes peroxides, contains selenium as a prosthetic group (2). The activity of glutathione peroxidase in tissues is directly related to the availability of dietary selenium; thus low enzyme activity is invariably associated with selenium deficiency (3). Although other selenium-containing proteins have since been identified in eukaryotic cells (4,5), glutathione peroxidase is the only selenoprotein to date that is functionally characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwarz, K. and Foltz, C.M. Selenium as integral part of Factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79: 3292 – 3293, 1957.

    Article  CAS  Google Scholar 

  2. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.L. and Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588 – 590, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Hoekstra, W.G. Biochemical function of selenium and its relation to vitamin E. Fed. Proc. 34: 2083 – 2089, 1975.

    PubMed  CAS  Google Scholar 

  4. Sunde, R.A. The biochemistry of selenoproteins. J. Am. Oil Chemists’Soc. 61: 1893 – 1900, 1984.

    Google Scholar 

  5. Hawkes, W.C., Wilhelmsen, E.C. and Tappel, A.L. Subcellular distribution of selenium-containing proteins in the rat. J. Inorg. Biochem. 25: 77 – 93, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Willet, W., Polk, B.F., Morris, S., Stampfer, M.J., Pressel, S., Rosner, B., Taylor, J.O., Schneider, K. and Hames, C.G. Prediagnostic serum selenium and risk of cancer. Lancet 2: 130 – 134, 1983.

    Article  Google Scholar 

  7. Clark, L.C., Graham, G.F., Crounse, R.G., Grimson, R., Hulka, B. and Shy, C.M. Plasma selenium and skin neoplasm: A case-control study. Nutrition & Cancer 6: 13 – 21, 1984.

    Article  CAS  Google Scholar 

  8. Yu, S.Y., Chu, Y.J., Gong, X.L. and Hou, C. Regional variation of cancer mortality incidence and its relation of selenium levels in China. Biol. Trace Element Res. 7: 21 – 29, 1985.

    Article  Google Scholar 

  9. Clark, L.C. The epidemiology of selenium and cancer. Fed. Proc. 44: 2584 – 2589, 1985

    PubMed  CAS  Google Scholar 

  10. Schrauzer, G.N., White, D.A. and Schneider, C.J. Cancer mortality correlation studies. III Statistical association with dietary selenium intake. Bioinorg. Chem. 7: 23 – 24, 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Ip, C. Selenium inhibition of chemical carcinogenesis. Fed. Proc. 44: 2573 – 2578, 1985.

    PubMed  CAS  Google Scholar 

  12. Medina, D. Selenium and murine mammary tumorigenesis. In “Diet, Nutrition and Cancer: A Critical Evaluation”. Vol 2, pg. 23–41. Reddy, B. and Cohen, L., Eds., CRC Press, Inc., Boca Raton, FL, 1986.

    Google Scholar 

  13. Ankerst, J. and Sjogren, H.O. Effect of selenium on the induction of breast fibroadenomas by adenovirus type 9 and 1,2-dimethyl-hydrazine induced bowel carcinogenesis in rats. Int. J. Cancer 29: 707 – 710, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Ip, C. Factors influencing the anticarcinogenie efficacy of selenium in dimethylbenz(a)anthracene induced mammary tumorigenesis in rats. Cancer Res. 41: 2683 – 2686, 1981.

    PubMed  CAS  Google Scholar 

  15. Welsch, C.W., Goodrich-Smith, M., Brown, C.K., Greene, H.D. and Hamel, E.J. Selenium and the genesis of murine mammary tumors. Carcinogenesis 2: 519 – 522, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson, H.J., Meeker, L.D., Becci, P.J. and Kokoska, S. Effect of short term feeding of sodium selenite on 7,12-dimethylbenz-(a)anthracene-induced mammary carcinogenesis in the rat. Cancer Res. 42: 4954 – 4958, 1982.

    PubMed  CAS  Google Scholar 

  17. Medina, D., Lane, H.W. and Shepherd, F. Effect of dietary selenium levels on 7,12-dimethylbenz(a)anthracene-induced mouse mammary tumorigenesis. Carcinogenesis 4: 1159 – 1163, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Schrauzer, G.N., White, D.A. and Schneider, C.J. Selenium and cancer: Effects of selenium and of the diet on the genesis of spontaneous mammary tumors in virgin inbred female C3H/St mice. Bioinorg. Chem. 8: 387 – 396, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Medina, D. and Shepherd, F. Selenium-mediated inhibition of 7,12-dimethylbenz(a)anthracene-induced mouse mammary tumorigenesis. Carcinogenesis 2: 451 – 455, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Ip, C. and Sinha, D. Enhancement of mammary tumorigenesis by dietary selenium deficiency in rats with a high polyunsaturated fat intake. Cancer Res. 41: 31 – 34, 1981.

    PubMed  CAS  Google Scholar 

  21. Ip, C. Modification of mammary carcinogenesis and tissue peroxidation by selenium deficiency and dietary fat. Nutrition & Cancer 2: 136 – 142, 1981.

    Article  CAS  Google Scholar 

  22. Medina, D. and Lane, H.W. Stage specificity of selenium-mediated inhibition of mouse mammary tumorigenesis. Biol. Trace Element Res. 5: 297 – 306, 1983.

    Article  CAS  Google Scholar 

  23. Thompson, H.J. and Becci, P.J. Selenium inhibition of N-methyl-N-nitrosourea induced mammary carcinogenesis in the rat. J. Natl. Cancer Inst. 65: 1299 – 1301, 1980.

    PubMed  CAS  Google Scholar 

  24. Thompson, H.J., Meeker, L.D. and Kokoska, S. Effect of an inorganic and organic form of dietary selenium on the promotional stage of mammary carcinogenesis in the rat. Cancer Res. 44: 2803 – 2806, 1984.

    PubMed  CAS  Google Scholar 

  25. Ip, C. Prophylaxis of mammary neoplasia by selenium supplementation in the initiation and promotion phases of chemical carcinogenesis. Cancer Res. 41: 4386 – 4390, 1981.

    PubMed  CAS  Google Scholar 

  26. Schrauzer, G.N., McGinness, J.E. and Kuehn, K. Effects of temporary selenium supplementation on the genesis of spontaneous mammary tumors in inbred female C3H/St mice. Carcinogenesis 1: 199 – 201, 1980.

    Article  CAS  Google Scholar 

  27. Greeder, G.A. and Milner, J.A. Factors influencing the inhibitory effect of selenium on mice inoculated with Ehrlich ascites tumor cells. Science 209: 825 – 827, 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Milner, J.A. and Hsu, C.Y. Inhibitory effects of selenium on the growth of L1210 leukemic cells. Cancer Res. 41: 1652 – 1656, 1981.

    PubMed  CAS  Google Scholar 

  29. Poirier, K.A. and Milner, J.A. Factors influencing the anti-tumorigenic properties of selenium in mice. J. Nutrition 113: 2147 – 2154, 1983.

    CAS  Google Scholar 

  30. Burk, R.F. Selenium in nutrition. World Review Nutrition and Diet 30: 88 – 106, 1978.

    CAS  Google Scholar 

  31. Ip, C. Interaction of vitamin C and selenium supplementation in the modification of mammary carcinogenesis in rats. J. Natl. Cancer Inst. 77: 299 – 303, 1986.

    PubMed  CAS  Google Scholar 

  32. Thompson, H.J., Meeker, L.D. and Becci, P. Effect of combined selenium and retinyl acetate treatment on mammary carcinogenesis. Cancer Res. 41: 1413 – 1416, 1981.

    PubMed  CAS  Google Scholar 

  33. Ip, C. and Ip, M.M. Chemoprevention of mammary tumorigenesis by a combined regimen of selenium and vitamin A. Carcinogenesis 2: 915 – 918, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Shils, M.E. and Levander, O.A. Selenium stability in TPN solutions. Am. J. Clin. Nutrition 35: 829, 1982.

    Google Scholar 

  35. Ip, C. Dietary vitamin E intake and mammary carcinogenesis in rats. Carcinogenesis 3: 1453 – 1456, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Horvath, P.M. and Ip, C. Synergistic effect of vitamin E and selenium in the chemoprevention of mammary carcinogenesis in rats. Cancer Res. 43: 5335 – 5341, 1983.

    PubMed  CAS  Google Scholar 

  37. Ip, C. Attenuation of the anticarcinogenic action of selenium of vitamin E deficiency. Cancer Lett. 25: 325 – 331, 1985.

    PubMed  CAS  Google Scholar 

  38. Sunde, R.A., and Hoekstra, W.G. Structure, synthesis and function of glutathione peroxidase. Nutrition Rev. 38: 265 – 273, 1980.

    Article  CAS  Google Scholar 

  39. Lane, H.W. and Medina, D. Selenium concentration and glutathione peroxidase activity in normal and neoplastic development of the mouse mammary gland. Cancer Res. 43: 1558 – 1561, 1983.

    PubMed  CAS  Google Scholar 

  40. Lane, H.W., Tracey, C.K. and Medina, D. Growth, reproduction rates and mammary gland selenium concentration and glutathione-peroxidase activity of BALB/c female mice fed two dietary levels of selenium. J. Nutrition, 114: 323 – 331, 1984.

    CAS  Google Scholar 

  41. Medina, D., Lane, H.W., and Tracey, C.M. Selenium and mouse mammary tumorigenesis: An investigation of possible mechanisms. Cancer Res. 43: 2460 – 2464, 1983.

    CAS  Google Scholar 

  42. Lane, H.W. and Medina, D. Mode of action of selenium inhibition of 7,12-dimethylbenzanthracene-induced mouse mammary tumorigenesis. J. Natl. Cancer Inst. 75: 675 – 679, 1985.

    PubMed  CAS  Google Scholar 

  43. Jacobs, M.M., Frost, C.F., and Beams, F.A. Biochemical and clinical effects of selenium on dimethylhydrazine-induced colon cancer in rats. Cancer Res. 41: 4458 – 4465, 1981.

    PubMed  CAS  Google Scholar 

  44. Birt, D.F., Lawson, T.A., Julius, A.D., Runice, C.E., and Salmasi, S. Inhibition by dietary selenium of colon cancer induced in the rat by bis(2-oxopropyl)nitrosamine. Cancer Res. 42: 4455 – 4459, 1982.

    PubMed  CAS  Google Scholar 

  45. Ip, C., and Sinha, D. Anticarcinogenic effect of selenium in rats treated with dimethylbenzathracene and fed different levels and types of fat. Carcinogenesis 2: 435 – 438, 1981.

    Article  PubMed  CAS  Google Scholar 

  46. Wong, P.K., Hampton, M.J., and Floyd, R.A. Evidence for lipoxygenase-peroxidase activation of N-hydroxy-2-acetylaminofluorene by rat mammary gland parenchymal cells. In Prostaglandins and Cancer, 1st International Conference, Alan R. Liss, Inc., New York, 1982, 167 – 179.

    Google Scholar 

  47. Borek, C., Ong, A., Mason, H., Donahue, L., and Biaglow, J.E. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitrovia different mechanisms. Proc. Natl. Acad. Sci., U.S.A., 83: 1490 – 1494, 1986.

    Article  PubMed  CAS  Google Scholar 

  48. Jacobs, M.M., Matney, T.S., and Griffin, A.C. Inhibitory effects of selenium on the mutagenicity of 2-acetylaminofluorene (AAF) and AAF derivatives. Cancer Lett. 2: 319 – 322, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Shamberger, R.J., Corlett, C.L., Beaman, K.D., and Kasten, B.L. Antioxidants reduce the mutagenic effect of malonaldehyde and B-propiolactone. IX. Antioxidants and cancer. Mutation Res. 66: 349 – 355, 1979.

    Article  PubMed  CAS  Google Scholar 

  50. Teel, R.W., and Kain, S.R. Selenium modified mutagenicity and metabolism of benz(a)pyrene in an S9-dependent system. Mutation Res. 127: 9 – 14, 1984.

    PubMed  CAS  Google Scholar 

  51. Marshall, M.W., Arnott, M.S., Jacobs, M.M., and Griffin, A.C. Selenium effects on the carcinogenicity and metabolism of 2-acetylaminofluorene. Cancer Lett. 7: 331 – 338, 1979.

    Article  PubMed  CAS  Google Scholar 

  52. Daoud, A.H., and Griffin, A.C. Effects of selenium and retinoic acid on the metabolism of N-acetylaminofluorene and N-hydroxy-acetylaminofluorene. Cancer Lett. 5: 231 – 237, 1978.

    Article  PubMed  CAS  Google Scholar 

  53. Harbach, P.R., and Swenberg, J.A. Effects of selenium on 1,2-dimethylhydrazine metabolism and DNA alkylation. Carcinogenesis 2: 575 – 580, 1981.

    Article  PubMed  CAS  Google Scholar 

  54. Bull, A.W., Burd, A.D. and Nigro, N.D. Effect of inhibitors of tumorigenesis on the formation of 0 -methylguanine in the colon of 1,2-dimethylhydrazine-treated rats. Cancer Res. 41: 4938 – 4941, 1981.

    PubMed  CAS  Google Scholar 

  55. Ip, C. and Daniel, F.B. Effects of selenium on 7,12-dimethyl-benzanthracene-induced mammary carcinogenesis and DNA adduct formation. Cancer Res. 45: 61 – 65, 1985.

    PubMed  CAS  Google Scholar 

  56. McKeehan, W.L., Hamilton, W.G., and Ham, R.G. Selenium is an essential trace element for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. USA 73: 2023 – 2027, 1976.

    Article  PubMed  CAS  Google Scholar 

  57. Guilbert, L.J., and Iscove, N.N. Partial replacement of serum by selenite, transferrin, albumin, and lecithin in hemopoietic cell cultures. Nature 263: 594 – 595, 1976.

    Article  PubMed  CAS  Google Scholar 

  58. Hutchings, S.E., and Sato, G.H. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc. Natl. Acad. Sci. USA 75: 901 – 904, 1980.

    Article  Google Scholar 

  59. Murakami, H. and Masui, H. Hormonal control of human colon carcinoma cell growth in serum-free medium. Proc. Natl. Acad. Sci. USA 77: 3464 – 3468, 1980.

    Article  PubMed  CAS  Google Scholar 

  60. Simms, E., Gazdar, A.F., Abrams, P.G., and Minna, J.D. Growth of human small cell (oat cell) carcinoma of the lung in serum-free growth factor supplemented medium. Cancer Res. 40: 4356 – 4363, 1980.

    PubMed  CAS  Google Scholar 

  61. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., and Sato, J. Growth of human hepatoma cell lines with differentiated functions in chemically-defined medium. Cancer Res. 42: 3858 – 3863, 1982.

    PubMed  CAS  Google Scholar 

  62. Messing, E.M., Fahey, J.J., deKernion, J.B., Bhuta, S.M., and Bubbers, J.E. Serum-free medium for the in vitrogrowth of normal and malignant bladder epithelial cells. Cancer Res. 42: 2392 – 3297, 1982.

    PubMed  CAS  Google Scholar 

  63. Bottenstein, J.E., Hayashi, I., Hutchings, S., Masui, H., Mather, J., McClure, D.B., Ohasa, S., Rizzina, A., Sato, G.H., Serrero, G., Wolfe, R., and Wu, B. The growth of cells in serum-free hormone-supplemented media. Methods Enzymol. 58: 94 – 106, 1979.

    Article  PubMed  CAS  Google Scholar 

  64. Potter, S.D., and Matrone, G. A tissue culture model for mercury-selenium interactions. Toxicol. Appl. Pharmacol. 40: 201 – 215, 1977.

    Article  PubMed  CAS  Google Scholar 

  65. Medina, D., and Oborn, C.J. Differential effects of selenium on the growth of mouse mammary cells in vitro. Cancer Lett. 13: 333 – 344, 1981.

    Article  PubMed  CAS  Google Scholar 

  66. Watrach, A.M., Milner, J.A., and Watrach, M.A. Effect of selenium on growth rate of canine mammary carcinoma cells in athymic nude mice. Cancer Lett. 15: 137 – 143, 1982.

    Article  PubMed  CAS  Google Scholar 

  67. Watrach, A.M., Milner, J.A., Watrach, M.A. and Poirier, K.A. Inhibition of human breast cancer cells by selenium. Cancer Lett. 25: 41 – 47, 1984.

    Article  PubMed  CAS  Google Scholar 

  68. Gruenwedel, D.W. and Cruickshank, M.K. The influence of sodium selenite on the viability and intracellular synthetic activity (DNA, RNA, and protein synthesis) of the HeLa cells. Toxicol. Appl. Pharmacol. 50: 1 – 7, 1979.

    Article  PubMed  CAS  Google Scholar 

  69. Medina, D., and Oborn, C.J. Selenium inhibition of DNA synthesis in mammary epithelial cell line YN-4. Cancer Res. 44: 4361 – 4365, 1984.

    PubMed  CAS  Google Scholar 

  70. Medina, D., Morrison, D.G. and Oborn, C.J. Selenium retention and inhibition of cell growth in mouse mammary epithelial cell lines in vitro. Biol. Trace Element Res. 8: 19 – 35, 1985.

    Article  CAS  Google Scholar 

  71. Chatterjee, M. and Banerjee, M.R. Selenium-mediated dose inhibition of 7,12-dimethylbenzanthracene-induced transformation of mammary cells in organ culture. Cancer Lett. 17: 187 – 195, 1982.

    Article  PubMed  CAS  Google Scholar 

  72. Medina, D., Lane, H.W. and Oborn, C.J. Uptake and localization of selenium-75 in mammary epithelial cell lines in vitro. Cancer Lett. 15: 301 – 310, 1982.

    Article  PubMed  CAS  Google Scholar 

  73. Vernie, L.N., Bont, W.S., and Emmelot, P. Inhibition of in vitroamino acid incorporation by sodium selenite. Biochem. 13: 337 – 341, 1974.

    Article  CAS  Google Scholar 

  74. Vernie, L.N., Bont, W.S., Ginjaar, H.B. and Emmelot, P. Elongation factor 2 as the target of the reaction product between sodium selenite and glutathione (GSSeSG) in the inhibiting of amino acid incorporation in vitro. Biochem. Biophys. Acta. 414: 283 – 292, 1975.

    PubMed  CAS  Google Scholar 

  75. Vernie, L.N., Homburg, C.J. and Bont, W.S. Inhibition of the growth of malignant mouse lymphoid cells by selenodiglutathione and selenodicysteine. Cancer Lett. 14: 303 – 308, 1981.

    Article  CAS  Google Scholar 

  76. Vernie, L.N., Homburg, C.J. and Bont, W.S. Inhibition of the growth of malignant mouse lymphoid cells by selenodiglutathione and selenodicysteine. Cancer Lett. 14: 303 – 308, 1981.

    Article  CAS  Google Scholar 

  77. Spallholz, J.E., Martin, J.L., Gerlach, M.L., and Heinzerling, R.H. Immunological responses of mice fed diets supplemented with selenite selenium. Proc. Soc. Exp. Biol. Med. 143: 685 – 689, 1973.

    PubMed  CAS  Google Scholar 

  78. Spallholz, J.E., Martin, J.L., Gerlach, M.L., and Heinzerling, R.H. Enhanced IgM and IgG titers in mice fed selenium. Infec. Immun. 8: 841 – 842, 1973.

    CAS  Google Scholar 

  79. Shakelford, J. and Martin, J. Antibody response of mature male mice after drinking water supplemented with selenium. Proc. Am. Soc. Expt. Biol. 39: 339, 1980.

    Google Scholar 

  80. Stadtman, T.C. Selenium-dependent enzymes. Ann. Rev. Biochem. 49: 93 – 110, 1980.

    Article  PubMed  CAS  Google Scholar 

  81. Pederson, N.D., Whanger, P.D., Weswig, P.H., and Muth, O. Selenium binding proteins in tissues of normal and selenium responsive myopathic lambs. Bioinorg. Chem. 2: 33 – 45, 1972.

    Article  Google Scholar 

  82. Calvin, H.I. Selective incorporation of selenium-75 into a polypeptide of the rat sperm tail. J. Exptl. Zool. 204: 445 – 452, 1978.

    Article  CAS  Google Scholar 

  83. Pallini, V. and Bacci, E. Bull sperm selenium is bound to a structural protein of mitochondria. J. Submicr. Cytol. 11: 165 – 170, 1979.

    CAS  Google Scholar 

  84. Burk, R.F. and Gregory, P.E. Some characteristics of 75Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with glutathione peroxidase. Archives Biochem. Biophys. 213: 73 – 80, 1982.

    Article  CAS  Google Scholar 

  85. Motsenbocker, M.A. and Tappel, A.L. A selenocysteine-containing selenium transport protein in rat plasma. Biochemica et Biophysica Acta 719: 147 – 153, 1982.

    CAS  Google Scholar 

  86. McConnell, K.P., Burton, R.M., Kute, T and Higgins, P.J. Seleno-proteins from rat testis cytosol. Biochemica et Biophysica Acta 588: 113 – 119, 1979.

    CAS  Google Scholar 

  87. Black, R.S., Tripp, M.J., Whanger, P.D. and Weswig, P.H. Selenium proteins in ovine tissues: III. Distribution of selenium and glutathione peroxidases in tissue cytosols. Bioinorg. Chem. 8: 161 – 172, 1978.

    CAS  Google Scholar 

  88. Motsenbocker, M.A. and Tappel, A.L. Selenium and selenoproteins in the rat kidney. Biochemica et Biophysica Acta 709: 160 – 165, 1982.

    Article  CAS  Google Scholar 

  89. Danielson, K.G., Oborn, C.J. and Medina, D. Analysis of selenium binding proteins in mouse mammary cells by two-dimensional gel electrophoresis. J. Cell Biol. 97: 331a, 1983.

    Google Scholar 

  90. Hawkes, W.C., Wilhelmsen, E.C., and Tappel, A.L. Abundance and tissue distribution of selenocysteine-containing proteins in the rat. J. Inorg. Biochem. 23: 77 – 92, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Ip, C., Medina, D. (1987). Current Concepts of Selenium and Mammary Tumorigenesis. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics