Skip to main content

Role of Differentiation on Transformation of Human Breast Epithelial Cells

  • Chapter

Abstract

There is increasing evidence that the fate of tumor development is determined by a conglomerate of circumstances acting at the time of initiation of the carcinogenic event (1). Tumors developed as a response to either a chemical, physical or biological insult do not arise at random, but require specific conditions of the host, of the target organ and of a specific target structure within that organ for the neoplastic phenomenon to take place (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russo, J. and Russo, I.H. Is Differentiation the answer in Breast Cancer Prevention. I.R.C.S. Journal of Medical Science 10: 931 – 941, 1982.

    Google Scholar 

  2. Russo, J., Tay, L.K., and Russo, I.H. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res. Treat. 2: 5 – 73, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Russo, J., Calaf, G., Martinez, F., Schroder, R., Tait, L., and Russo, I.H. Age-related variations in growth kinetics of primary human breast cell cultures. In Vitro16: 52, 1980.

    Google Scholar 

  4. Russo, I.H., Ireland, M., Isenberg, W., and Russo, J. Ultrastructural description of three different epithelial cell types in rat mammary gland. Proc. Electron Microscopy Soc. Am. 34: 146 – 147, 1976.

    Google Scholar 

  5. Russo, J., Isenberg, W., Ireland, M. and Russo, I.H. Ultrastructural changes in the mammary epithelial cell population during neoplastic development induced by a chemical carcinogen. Proc. Electron Microscopy Soc. Am. 34: 250 – 251, 1976.

    Google Scholar 

  6. Russo, I.H., King, M.M., Grozea, P.N. and Russo, J. Effects of dietary fat and BHT on rat mammary gland differentiation and susceptibility to carcinogenesis. Proc. Am. Assoc. Cancer Res. 22: 446a, 1981.

    Google Scholar 

  7. Russo, I.H., and Russo, J. Developmental stage of the rat mammary gland determinant of its susceptibility to 7,12-dimethyl-benz(a)anthracene. J. Natl. Cancer Inst. 61: 1439 – 1449, 1978.

    PubMed  CAS  Google Scholar 

  8. Russo, J., and Russo, I.H. DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis. J. Natl. Cancer Inst. 61: 1451 – 1459, 1978.

    PubMed  CAS  Google Scholar 

  9. Russo, J., and Russo, I.H. Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 40: 2677 – 2687, 1980.

    PubMed  CAS  Google Scholar 

  10. Russo, J., Saby, J., Isenberg, W. and Russo, I.H. Pathogenesis of mammary carcinomas induced in rats by 7,12-dimethylbenz(a)-anthracene. J. Natl Cancer Inst. 49: 435 – 445, 1977.

    Google Scholar 

  11. Russo, J., Tait, L., and Russo, I.H. Susceptibility of the mammary gland to carcinogenesis. III. The Cell of origin of mammary carcinoma. Am. J. Pathol., 113: 50 – 66, 1983.

    PubMed  CAS  Google Scholar 

  12. McGregor, D.H., Land, E.E., Choi, K., Tokuoka, S., and Liv, P.I. Breast cancer incidence among atomic bomb survivors. Hiroshima and Nagasaki, 2950–69. J. Natl. Cancer Inst. 59: 799 – 811, 1977.

    PubMed  CAS  Google Scholar 

  13. Myrden, J.A., Hiltze, J.E. Breast cancer following multiple fluoroscopies during artificial pneumothorax treatment of pulmonary tuberculosis. Cancer Med. Assoc. J. 100: 1032 – 1034, 1969.

    CAS  Google Scholar 

  14. Huberman, E, Sachs, L. Cell susceptibility to transformation and cytotoxicity by the carcinogenic hydrocarbon benzo(a)pyrene. Proc. Natl. Acad. Sci. USA 56: 1123 – 1129, 1966.

    Article  PubMed  CAS  Google Scholar 

  15. Huberman, E., Sachs, L. DNA binding and its relationship to carcinogenesis by different polycyclic hydrocarbons. Int. J. Cancer 19: 122 – 127, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Tay, L.K. and Russo, J. Formation and removal of 7,12-dimethyl-benz(a)anthracene-nucleic acid adducts in rat mammary epithelial cells with different susceptibility to carcinogenesis. Carcinogenesis 2: 1327 – 1333, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Tay, L.K., and Russo, J. 7,12-dimethylbenz(a)anthracene-induced DNA binding and repair synthesis in susceptible and nonsusceptible mammary epithelial cells in culture. J. Natl. Cancer Inst. 67: 155 – 161, 1981.

    PubMed  CAS  Google Scholar 

  18. Tay, L.K., Russo, I.H., Miller, J., and Russo, J. Influence on gland differentiation of binding of 7,12-dimethylbenz(a)anthracene (DMBA) to DNA of human breast epithelial cells in primary culture. In Vitro17: 201a, 1981.

    Google Scholar 

  19. Russo, J., and Russo, I.H. Early phenotypical changes in human breast epithelial cells (HBEC) treated with 7,12-dimethylbenz-(a)anthracene. Proc. Am. Assoc. Cancer Res. 25: 529a, 1984.

    Google Scholar 

  20. Geschickter, C.F., Lewis, D. Pregnancy and lactation changes in fibroadenoma of the breast. Br. Med. J. 1: 499 – 504, 1938.

    Article  PubMed  CAS  Google Scholar 

  21. Tanner, J.M. Growth at adolescence. Blackwell Scientific Publishing, Ltd, Oxford, 1962.

    Google Scholar 

  22. Dabelow, A., Die, Milchdruse. In: Handbuch der Mikrokopishen Anatomie des Menschen. Vol 3, part 3. Haut und Sinnes Organs (W. Bargmann, Ed.), Springer-Verlag, Berlin, 1957 pp. 277 – 485.

    Google Scholar 

  23. Calaf, G., Martinez, F., Russo, I.H., Roi, L. and Russo, J. The influence of age on DNA-labeling index of Human Breast Epithelium. International Research Communication System, Med. Sc. 10: 657 – 658, 1982.

    Google Scholar 

  24. Calaf, G., Martinez, F., Russo, I.H. and Russo, J. Age related variations in Growth Kinetics of primary human breast cell culture. International Research Communications System. Med. Sc. 10: 551 – 552, 1982.

    Google Scholar 

  25. Brookes, P., Lawley, P.D. Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: Relation between carcinogenic power of hydrocarbons and their binding to DNA. Nature 202: 781 – 784, 1964.

    Article  PubMed  CAS  Google Scholar 

  26. Bulbrook, R.D., Hayward, J.L., Spicer, C.C. and Thomas, B.S. Urinary steroid excretion of normal women and women with advanced breast cancer. Lancet ii: 1235 – 1240, 1962.

    Google Scholar 

  27. Bulbrook, R.D., Hayward, J.L. and Thomas, B.S. The relation between urinary 17-hydroxycorticosteroids and 11-deoxy-17-oxosteroids and the fate of patients with mastectomy. Lancet i: 945 – 947, 1964.

    Google Scholar 

  28. Bulbrook, R.D., Hayward, J.L. and Spicer, C. Relation between urinary androgen and corticoid excretion and subsequent breast cancer. Lancet ii: 395 – 398, 1971.

    Google Scholar 

  29. Kumaoka, S., Sakauchi, N., Abe, O., Kusama, M., and Takatani, I. Urinary 17-keto-steroid excretion of women with advanced breast cancer. J. Clin. Endocrinol. Metab. 28: 667 – 672, 1968.

    Article  PubMed  CAS  Google Scholar 

  30. Sherman, B.M., and Korenman, S.G. Inadequate corpus luteum function: a pathophysiological interpretation of human breast cancer epidemiology. Cancer 33: 1306 – 1312, 1974.

    Article  PubMed  CAS  Google Scholar 

  31. Stewart, H.L., Dunham, L.J., Casper, J., Dorn, H.F., Thomas, L.B., Edgecomb, J.H. and Symeonidis, A. Epidemiology of uterine cervix and corpus, breast and ovary in Israel and New York City. J. Natl. Cancer Inst. 37L1–95, 1966.

    Google Scholar 

  32. Sunkara, P.S., Rao, P.N., and Nishioka, K. Role of putrescine in DNA synthesis in DNA synthesis and mitosis of mammalian cells. Proc. Am Assoc. Cancer Res. 18: 84a, 1977.

    Google Scholar 

  33. Surgeon General’s Report. Smoking and Health, Government Printing Office, Public Health Service Publication No. 79–50066, Washington, DC, 1979.

    Google Scholar 

  34. NAS. Particulate Polycyclic Organic Matter. National Academy of Sciences, Washington, DC, 1972.

    Google Scholar 

  35. Commoner, B., Vithayathil, A.J., Dolara, P., Sabhadra, N., Madyastha, P., and Cuca, G.C. Formation of mutagens in beef and beef extract during cooking. Science 201: 913 – 916, 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Grasso, P., and O’Hare, C. Carcinogens in food. In: Chemical Carcinogens, (C.E. Searles, Ed.), American Chemical Society, Washington, DC, 1976, pp. 701 – 728.

    Google Scholar 

  37. Petrakis, N.L. Genetic cerum type, breast secretory activity, and breast cancer epidemiology. In: Genetics of Human Cancer, (J.S. Mulvihill, R.W. Miller, and J.F. Fraumeni, Jr., Eds.), Raven Press, New York, 1977, pp. 297 – 300.

    Google Scholar 

  38. Petrakis, N.L., Mason, L., Lee, R., Sugimoto, B., Pawson, S., and Catchpool, F. Association of race, age, menopausal status, and cerum type with breast fluid secretion in nonlactating women, as determined by the nipple aspiration. J. N.tl. Cancer Inst. 54: 829 – 833, 1975.

    CAS  Google Scholar 

  39. Higginson, J. The role of geographical pathology on environmental carcinogenesis. In: Twenty Fourth Annual Symposium on Fundamental Cancer Research: Environment and Cancer, Williams and Wilkins, Baltimore, 1972, pp. 69 – 79.

    Google Scholar 

  40. Allaben, W.T., Weeks, C.E., Tresp, N.C., Lovie, S.C., Lazear, E.J., and King, C.M. Mammary tumor induction in the rat by N-acyl-N-2-fluorenyl hydroxylamines: structure activity relationship. Fed. Proc. 37: 1543, 1978.

    Google Scholar 

  41. Ito, N. In: In VitroCarcinogenesis of 4 Nitroquinoline 1-oxide and Related Compounds. Carcinogenesis Vol. 6: The Nitroquinolines ( T. Sugimura, Ed.), Raven Press, N.Y. 1981.

    Google Scholar 

  42. Shirai, T., Fysh, J.M., Lee, M.S., Vaught, J.B., and King, C.M. Relationship of metabolic activation of N-hydroxy-N-acyl arylamines to biological response in the liver and mammary gland of the female CD rat. Cancer Res. 41: 4346 – 4353, 1981.

    PubMed  CAS  Google Scholar 

  43. Huggins, C., Grand, L.C., and Brillantes, F.P. Critical significance of breast structure in the induction of mammary cancer in the rat. Proc. Natl. Acad. Sci. (U.S.) 45: 1294 – 1300, 1959.

    Article  CAS  Google Scholar 

  44. Gullino, P.M., Pettigrew, H.M., and Grantham, F.H. N-Nitrosomethyl-urea as mammary gland carcinogen in rats. J. Natl. Cancer Inst. 45: 401 – 404, 1975.

    Google Scholar 

  45. Yamamoto, T., Rabinowitz, Z., Sachs, L. Identification of the chromosomes that control malignancy. Nature (New Biol) 243: 247 – 250, 1973.

    CAS  Google Scholar 

  46. Stampfer, M., Hallowes, R.C., and Hackett, A.J. Growth of normal human mammary cells in culture. In Vitro16: 415 – 425, 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Hammon, S., Ham, R.G., Stampfer, M.R. Serum-free growth of human mammary epithelial cells: Rapid clonal growth in defined medium and extended serial passage with pituitary extract. 81: 5435 – 5439, 1984.

    Google Scholar 

  48. Russo, J., Furmanski, P., Bradley, R., Wells, P. and Rich, M.A. Differentiation of Normal human mammary epithelial cells in culture: An ultrastructural Study. Am. J. Anat. 145: 57 – 67, 1976.

    Article  PubMed  CAS  Google Scholar 

  49. Ceriani, R.L., Peterson, J.A. Characterization of antigens of the mouse mammary epithelial cell (MME antigens) carried on the mouse milk fat globule. Cell Diff 7: 355 – 360, 1978.

    Article  CAS  Google Scholar 

  50. Ceriani, R.L., Peterson, J.A., Abraham, S. Immunologic methods for the identification of cell types. II. Expression of normal mouse mammary epithelial cell antigens in mammary neoplasia. J. Natl. Cancer Inst. 61: 747 – 751, 1978.

    PubMed  CAS  Google Scholar 

  51. Thompson, K., Ceriani, R.L., Wong, D., Abraham, S. Immunologic methods for the identification of cell types. I. Specific antibodies that distinguish between mammary gland epithelial cells and fibroblasts. J. Natl. Cancer Inst. 57: 167 – 172, 1976.

    PubMed  CAS  Google Scholar 

  52. Russo, J. Immunocytochemical Markers in Breast Cancer In: Immunocytochemistry in Tumor Diagnosis, (J. Russo, ed.), M. Nijhoff Publishing, Boston, pp 207–232, 1985.

    Google Scholar 

  53. Russo, J., and Wells, P., J. Ultrastructural localizations of adenosine triphosphatase activity in resting mammary gland. J. Histochem. Cytochem. 245: 160 – 169, 1977.

    Google Scholar 

  54. Berky, J.J., Zolotor, L. Development and characterization of cell lines of normal mouse bladder epithelial cells and 2 acetyl-aminofluorene-induced urothelial carcinoma cells grown in monolayer tissue culture. In Vitro13: 63 – 75, 1977.

    Article  PubMed  CAS  Google Scholar 

  55. Marchok, A.C., Rhetan,J.C., Nettesheim, P. In Vitrodevelopment of oncogenicity in cell lines established from tracheal epithelium preexposed in vivoto 7,12-dimethylbenz(a)anthracene. Cancer Res. 38: 2030 – 2037, 1978.

    PubMed  CAS  Google Scholar 

  56. Montesano, R., Saint Vincent, L., and Tomatis, L. Malignant Transformation in vitroof rat liver cells by dimethylnitrosamine and N-Methyl-N-nitro-N-nitrosoquinoline. Br. J. Cancer 29: 214 – 220, 1973.

    Google Scholar 

  57. Smith, H.S., Lan, S., Ceriani, R., Hackett, J., and Stampfer, M. Clonal proliferation of Cultured nonmalignant and Malignant-human breast epithelia. J. Cancer Res. 41: 4637 – 4643, 1981.

    CAS  Google Scholar 

  58. Asch, B.B., Medina, D., Kretzer, F., Connally, J.L., Brenkley, B.R. Comparative responses of normal and malignant Mouse Mammary Cells to Modulation of Surface Properties. Cancer Res. 40: 2383 – 2389, 1980.

    PubMed  CAS  Google Scholar 

  59. Moorhead, P.S., Nowell, P.C., Mellman, W.J., Battips, D.M., and Hungerford, D.A. Chromosome preparations of leukocytes cultured from Human peripheral blood. Exp. Cell Res. 20: 613 – 616, 1960.

    Article  PubMed  CAS  Google Scholar 

  60. Sandberg, A.A. The chromosomes in human Cancer and leukemia. New York: Elsevier/North Holland, 1980.

    Google Scholar 

  61. Cooper, G.M., Okenguist, S., and Silverman, L. Transforming activity of DNA of chemically transformed and normal cells. Nature 284: 218 – 421, 1980.

    Article  Google Scholar 

  62. Cooper, G.M., Nieman, P.E. Transforming genes of neoplasms induced by avian lymphoid leukosis viruses. Nature, 287: 656 – 659, 1980.

    Article  PubMed  CAS  Google Scholar 

  63. Chiaho, S., Ben-Zion, S., Goldfarb, M.P., Dannenber, A., and Weinberg, R.A. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. National Acad Sci. USA 76: 5714 – 5718, 1979.

    Article  Google Scholar 

  64. Cooper, G.M. Cellular Transforming Genes. Science 217: 801 – 806, 1982.

    Article  PubMed  CAS  Google Scholar 

  65. Weinberg, R.A. The action of oncogenes in the cytoplasm and nucleus. Science 230: 770 – 776, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Land, Hartmut, Parada, L.F., and Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596 – 602, 1983.

    Article  PubMed  CAS  Google Scholar 

  67. Russo, J., Wilgus, G., and Russo, I.H. Susceptibility of the mammary gland to carcinogenesis. 1. Differentiation of the mammary gland as determinant of tumor incidence an type of lesion. Am. J. Pathol. 96: 721 – 736, 1979.

    PubMed  CAS  Google Scholar 

  68. Russo, J., Wilgus, G., Tait, L., and Russo, I.H. Influence of age and parity on the susceptibility of rat mammary gland epithelial cells in primary cultures to 7,12-dimethylbenz(a)anthracene. In Vitro17: 877 – 884, 1981.

    Article  PubMed  CAS  Google Scholar 

  69. Stanbridge, E.J., Der, C.J., Doersen, C.J. Nishimi, R.Y., Piihl, D.M., Weissman, B. E. and Wilkinson, J.E. Human cell hybrids: Analysis of transformation and tumorigenicity. Science 214: 252 – 259, 1982.

    Article  Google Scholar 

  70. Armitage, P., and Doll, R. The age distribution of cancer and multistage theory of carcinogenesis. Br. J. Cancer 8: 1 – 12, 1954.

    Article  PubMed  CAS  Google Scholar 

  71. Barret, J.C., and Ts’o, P.O.P. Relationship between somatic mutation and neoplastic transformation. Proc. Natl. Acad, of Sci. USA 75: 3297 – 3301, 1978.

    Article  Google Scholar 

  72. DiPaolo, J.A. Relative Difficulties in transforming Human and Animal Cells in Vitro. J. Natl Cancer Inst. 70: 3 – 8, 1983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Russo, J., Russo, I.H. (1987). Role of Differentiation on Transformation of Human Breast Epithelial Cells. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics