Skip to main content

Growth Factor Production by Mammary Tumor Cells

  • Chapter

Abstract

Much attention has recently been focused on the possibility that the behavior of tumorigenic cells (anchorage independent growth, loss of growth factor dependency, loss of contact inhibition, etc.) are caused by changes in the control of expression of growth factors and/or their receptors (1,2). Indeed, the transforming genes of a number of tumor cells and viruses have been identified as genes for growth factors or receptors (1,2). Our aim here is not to present a complete review of this area, but rather to compile the published data from our lab and others on the types of growth factors that have been detected in primary and established mammary cell lines and in extracts of normal and neoplastic mammary epithelium from rodent and human tissues. The list is quite long, even for human mammary tumors and tumor cell lines. It includes mammary-derived growth factor I (MDGFI), mammary-derived growth factor II (MDGFII), transforming growth factor alpha (TGFα), transforming growth factor beta (TGF/β), insulin-like growth factor I (IGFI), p; platelet-derived growth factor (PDGF), gastrin-releasing peptide (GRP), 52 K protein, epidermal growth factor (EGF), and human tumor growth factor (h. TGF). Rodent mammary tumors contain these factors and some additional ones as well. For example, 7, 12-dimethylbenz(a)anthracene-induced rat mammary cell lines produce an activity that greatly stimulates myoepithelial, but not epithelial, cell growth. Rat mammary tumors also contain a growth inhibitory activity similar to one that Grosse’s laboratory has purified from bovine mammary tissue (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doolittle, R.D., Hunkapiller, M.W., and Hood, L.E. Simian sarcoma virusoncgene, v-sis, is derived from the genes encoding a platelet-derived growth factor. Science 221: 275–277, 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Downward, J., Yarden, Y., Mayers, E., Scrace, G., Toty, N., Stockwell, P., Ulrich, A., Schlessinger, J., and Waterfield. M.D. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Bohmer, F-D., Lehmann, W., Noll, F., Samtleben, R., Langen, P., and Grosse, R. Specific neutralizing antiserum against a polypeptide growth inhibitor for mammary cells purified from bovine mammary gland. Biochem. Biophys. Acta. 846: 145–154, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Kidwell, W.R., and Salomon, D.S. Growth factors in human milk: sources and potential physiological roles.In: Minor Protein Constituents in Human Milk, Lonnerdahl, B., and Atkinson, S. (eds.), CRC Reviews, Boca Raton, Fla. In press.

    Google Scholar 

  5. Zwiebel, J., Davis, M., Kohn, E., Salomon, D., and Kidwell, W.R. Anchorage-independent growth conferring factor production by rat mammary tumor cells. Cancer Res. 42: 5117–5125, 1982.

    PubMed  CAS  Google Scholar 

  6. Swain, S., and Lippman, M. Partial purification of a high molecular weight acidic growth factor from a breast cancer cell line. Proceedings of the Annual Meeting of the American Association for Cancer Research, Los Angeles, May 1986.

    Google Scholar 

  7. Todaro, G.J., Marquardt, H., Tawrdzik, D.R., and DeLarco, J. Transforming growth factors produced by viral-transformed and human cells. In: Genes and Proteins in Oncogenesis, Weinstein, I.B., and Vogel, H.J. (eds.), Academic Press, New York, 1983, pp. 165–181.

    Google Scholar 

  8. Kidwell, W.R., Taylor, S., Bano, M., and Grantham, F. Growth Arrest of Mammary Tumors by Proline Analogs. Prog. Cancer Res. and Therapy 31: 129–136, 1984.

    CAS  Google Scholar 

  9. Anzio, M., Roberts, A., Smith, J., Sporn, M., and deLarco, J. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc. Natl. Acad. Sci. U.S.A. 80: 6264–6268, 1983.

    Article  Google Scholar 

  10. Todaro, G.J. Tumor Growth Factors and Vaccinia Virus Growth Factors: Role in Epithelial Wound Healing, Institute Roussel Scientifique Symposium: “Hormones, Oncogenes, Growth Factors”, Paris, June 8–10, 1986, p. 33.

    Google Scholar 

  11. Stern, P.H., Krieger, N.S., Nissenson, R.A., Williams, R.D., Winkler, M.E., Derynck, R., and Strewler, G.J. Human transforming growth factor alpha stimulates bone resorptionin vitro. J. Clin. Invest. 76: 2016–2019, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Schreiber, A.B., Winkler, M.E., and Derynck, R. Transforming growth factor alpha is a more potent angiogenic mediator that epidermal growth factor. Science 32: 1250–1253, 1986.

    Article  Google Scholar 

  13. Kidwell, W.R. Autocrine mechanisms regulating basal lamina production by mammary tumors. Proceedings of the Institute Scientifique Roussel Symposium: Hormones, Oncogenes, Growth Factors, Paris, June 8–10, 1986, p. 14.

    Google Scholar 

  14. Perroteau, I., Kidwell, W.R., DeBertoli, M., and Salomon, D.S. Immunoreactive alpha-transforming growth factor in human breast cancer extracts and in breast cancer cell lines. Breast Cancer Res. Treat. 6: 166, 1986.

    Google Scholar 

  15. Dickson, R.B., Huff, K.K., Spencer, E.M., and Lippman, M. Induction of epidermal growth factor-related peptides by 17 beta-estradiol in MCF-7 human breast cancer cells. Endocrin. 118: 138–142, 1986.

    Article  CAS  Google Scholar 

  16. Kidwell, W.R., Liu, S., and Salomon, D.S. Ovariectomy reduces the level of transforming growth factor alpha in primary, 7,12-DMBA- induced and in MTW9 transplantable rat mammary tumors. Cancer Research. Submitted.

    Google Scholar 

  17. Derynck, R., Roberts, A., Winkler, M.E., Chen, E.Y., and Goeddel, D.V. Human transforming growth factor alpha: precursor structure and expression in E. coli. Cell 38: 287–297, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Derynck, R., Jarrett, J.A., Chen, E.Y., Eaton, D.H., Bell, J.R., Assoian, R., Roberts, A., Sporn, M., and Goedel, D.V. Human transforming growth factor beta: cDNA sequence and expression in tumor cell lines. Nature 316: 701–705, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Shipley, G.D., Tucker, R.F., and Moses, H.L. Type beta transforming growth factor/growth inhibitor stimulates reentry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative period. Proc. Natl. Acad. Sci. U.S.A. 82: 4147–4151, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Tucker, R.F., Shipley, G.D., Moses, H.L., and Holley, R.W. Growth inhibitor from BSC-1 cells closely related to the platelet type beta transforming growth factor. Science 226: 705–707, 1985.

    Article  Google Scholar 

  21. Roberts, A., Anzio, M., Wakefield, L.M., Roche, N.S., Stern, D.F., and Sporn, M. Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. U.S.A. 82: 119–123, 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Lawrence, D.A., Pircher, R., Kryceve-Martiniere, C., and Jullien, P. Normal embryo fibroblasts release transforming growth factors in a latent form. J. Cell. Physiol. 121: 184–188, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Scott, J., Urdea, M., Quiroga, M., Sanchez-Pescador, R., Fong, N., Selby, M., Rutter, W., and Bell, G.I. Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins. Science 221: 236–240, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Gray, A., Dull, T.J., and Ulrich, A. A nucleotide sequence for epidermal growth factor cDNA predicts a 128,000 molecular weight protein. Nature 303: 722–725, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Salomon, D.S., Kidwell, W.R., Sith, G.S., and Bell, G.I. Presence of transforming growth factors in human breast tumors and milk. Cancer Res. 26: 198, 1985.

    Google Scholar 

  26. Mori, K., Kurobe, M., Furukawa, S., Kubo, K., and Hayashi, K. Human breast cancer cells synthesize and secrete an EGF-like immunoreactive factor in culture. Biochem. Biophys. Re. Commun. 136: 300–305, 1986.

    Article  CAS  Google Scholar 

  27. Collette, J., Hendrick, J-C., Jaspar, J-M., and Franchimont, P. Presence of lactalbumin, epidermal growth factor, epithelial membrane antigen and gross cystic disease fluid protein (15,000 daltons) in breast cyst fluid. Cancer Res. 46: 3728–3733, 1986.

    PubMed  CAS  Google Scholar 

  28. Read, L.C., Upton, F., Francis, L., Wallace, J.C., Dahlenberg, G.W., and Ballard, F. Changes in the growth promoting activity of human milk during lactation. Pediatr, Res. 18: 133–136, 1984.

    Article  CAS  Google Scholar 

  29. Imagawa, W., Tomooka, K., Hamamoto, S., and Nandi, S. Stimulation of mammary epithelial cell growthin vitro: interaction of Epidermal growth factor and mammotrophic hormones. Endocrin. 116: 1514–1523, 1985.

    Article  CAS  Google Scholar 

  30. Zwiebel, J.A., Bani, M., Salomon, S.S., and Kidwell, W.R. Partial purification of transforming growth factors from human milk. Cancer Res. 46: 933–939, 1986.

    PubMed  CAS  Google Scholar 

  31. Insulin-like Growth Factors/Somatomedins: Basic Chemistry, Biology and Clinical Importance. Spencer, E.M. (ed.), W. de Gruyther and Co., Berlin, 1983.

    Google Scholar 

  32. Herrington, A.C., and Kuffer, A.D. Evidence for proteolytic cleavage of insulin-like growth factors to a biologically active form.In: Insulin-Like Growth factors/Somatomedins: Basic Chemistry, Biology and Clinical Relevance. Spencer, E.M. (ed.), Walter de Gruyther and Co., Berlin, 1983, pp. 113–125.

    Google Scholar 

  33. Baxter, R.C. High molecular weight somatomedin C/Insulin-like growth factor from T47D human mammary carcinoma cells.In: Insulin-like Growth Factors/Somatomedin C: Basic Chemistry, Biology, and Clinical Importance., Spencer, E.M. (ed.), Walter de Gruyther and Co., Berlin, 1983, pp. 615–618.

    Google Scholar 

  34. Huff, K.K., Lippman, M., and Spencer, E.M. Secretion of immunoreactive IGFI/Somatomedin C by cultured breast cancer cells in serum free medium. 7th Int. Cong. Endocrin. Proceedings, p728, 1984.

    Google Scholar 

  35. Baxter, R.C., Zaltsman, Z., and Turtle, J. Immunoreactive somatomedin C/IGFI and its binding protein in human milk. Endocrin. 58: 955–958, 1984.

    CAS  Google Scholar 

  36. Massague, J., Kelley, B., and Mottola, C. Stimulation by insulin-like growth factor is required for cellular transformation by type beta transforming growth factor. J. Biol. Chem. 260: 4551–4556, 1985.

    PubMed  CAS  Google Scholar 

  37. Bano, M., Salomon, D.S., and Kidwell, W.R. Purification of mammary-derived growth factor from human milk. J. Biol. Chem. 260: 5745–5752, 1985.

    PubMed  CAS  Google Scholar 

  38. Bano, M., Zwiebel, J.A., Salomon, D.S., and Kidwell, W.R. Detection and partial characterization of collagen synthesis stimulating activities in rat mammary adenocarcinomas. J. Biol. Chem. 258: 2729–2735, 1983.

    PubMed  CAS  Google Scholar 

  39. Kidwell, W.R., Bano, M., and Salomon, D.S. Growth of normal mammary epithelium on collagen in serum-free medium.In: Methods for Serum-fee Culture of Cells of the Endocrine System, Barnes, D.W., Sirbasku, D.A., and Sata, G.H. (eds), Cell Culture Methods for Molecular and Cell Biology, Vol. 2, Alan R. Liss, Inc., New York, 1984, pp. 105–126.

    Google Scholar 

  40. Wicha, M.S., Liotta, L.A.. Garbisa, S., and Kidwell, W.R. Basement membrane collagen requirements for growth and attachment of mammary epithelium. Exp. Cell Res. 124: 181–190, 1979.

    Article  PubMed  CAS  Google Scholar 

  41. Wicha, M.S., Liotta, L.A., Vonderhaar, B.K., and Kidwell, W.R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Develop. Biol. 80: 253–266, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Lewko, W.L., Liotta, L.A., Wicha, M.S., Vonderhaar, B.K., andKidwell, W.R. Sensitivity of N-nitrosomethylurea-induced rat mammary tumors to cishydroxyproline, an inhibitor of collagen production. Cancer Res. 41: 2855–2862, 1981.

    PubMed  CAS  Google Scholar 

  43. Liotta, L.A., Tryggvason, K., Garbisa, S., Gehron-Robey, P., and Abe, S. Partial purification and characterization of a neutral protease which cleaves type IV collagen. Biochemistry 20: 100–104, 1981.

    Article  PubMed  CAS  Google Scholar 

  44. Kidwell, W.R., Bano. M., and Taylor, S.J. Mammary tumor growth arrest by collagen synthesis inhibitors. Biological Responses in Cancer, Vol. 4, Mihich, E. (ed.), Plenum Press, New York, 1985, pp. 47–70.

    Google Scholar 

  45. Westley, B., and Rochefort, H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 20: 352–362, 1980.

    Article  Google Scholar 

  46. Garcia, M., Capony, F., Derocq, D., Simon, D., Pau, B., and Rochefort, H. Characterization of monoclonal antibodies to estrogen-regulated Mr 52,000 glycoprotein and their use in MCF-7 cells. Cancer Res. 45: 709–716, 1985.

    PubMed  CAS  Google Scholar 

  47. Touitou, I., Garcia, M., Westley, B., Capony, F., and Rochefort, H. Effect of tunacamycin and endoglycosidase H and F on the estrogen regulated 52000 Mr protein secreted by breast cancer cells. Biochimie 67: 1257–1266, 1985.

    Article  PubMed  CAS  Google Scholar 

  48. Morisset, M., Capony, F., and Rochefort, H. The estrogen regulated 52,000 Mr protein is a cathepsin-like protease. Biochem. Biophys. Res. Commun. In Press.

    Google Scholar 

  49. Garcia, M., Salazar-Retana, G., Richer, G., Domergue, J., Capony, F., Pujol, H., Laffargue, F., Pau, B., and Rochefort, H. Immunohisto- chemical detection of estrogen regulated 52,000 mol wgt protein in primary breast cancer but not in normal breast or uterus. J. Clin. Endocrin. Metab. 59: 564–566, 1984.

    Article  CAS  Google Scholar 

  50. Jahnke, G.D. and Lazarus, L.H. A bombesin immunoreactive peptide in milk. Proc. Natl. Acad. Sci. U.S.A. 81: 578–580, 1984.

    Article  PubMed  CAS  Google Scholar 

  51. Elkman, R., Ivarsson, S., and Jansson, L. Bombesin, Neurotensin and pro-7-melanotropin immunoreactivity in human milk. Regulatory Peptides 10: 99–104, 1985.

    Article  Google Scholar 

  52. Guadino, G., Debertoli, M.E., and Lazarus, L.H. A bombesin-related peptide in experimental mammary tumors in rats. New York Acad. Sci. In press.

    Google Scholar 

  53. Guadino, G., Debertoli, M.E., and Lazarus, L.H. Bombesin-like immunoreactivity in human mammary tumors. 5th Internatl. George Washington Univ. Spring Symposium Proceedings, 1985, p. 28.

    Google Scholar 

  54. Carney, D.N., Oie, H., Moody, T.W., and Minna, J. Bombesin: an autocrine growth factor for human small cell lung cancer cell lines. Clin. Res. 31: 404–408, 1983.

    Google Scholar 

  55. Ross, R. The platelet-derived growth factor.In: Handbook of Experimental Pharmacology, Tissue Growth Factors, Vol. 57, Baserga, R., (ed.), Springer-Verlag, New York, 1981, pp. 133–159.

    Google Scholar 

  56. Brown, K.D., and Blakeley, D.M. Partial purification and characterization of a growth factor from goat colostrum. Biochem. J. 219: 609–613, 1984.

    PubMed  CAS  Google Scholar 

  57. Heldin, C.-H., and Westermark, B. Platelet-derived growth factor-structure function and possible role in autocrine stimulation of cell growth. Institute Scientifique Roussel Symposium: “Hormones, Oncogenes, growth factors”, Paris, June 8–10, 1986, p. 13.

    Google Scholar 

  58. Rosengurtz, E., Sinnett-Smith, J., and Taylor-Papadimitriou, J. Production of PDGF-like growth factor by breast cancer cell lines. Int. J. Cancer 36: 247–253, 1985.

    Article  Google Scholar 

  59. Heldin, C.-H., Westermark, B., and Wasteson, A. Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc. Natl. Acad. Sci. U.S.A. 78: 3664–3668, 1981.

    Article  PubMed  CAS  Google Scholar 

  60. Bohmer, F.D., Lehmann, W., Eberhart, H., Langen, P., and Grosse, R. Purification of a growth inhibitor for Ehrlich ascites mammary carcinoma cells from bovine mammary gland. Exp. Cell Res. 150: 466–476, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Langen, P., Lehmann, W., Graetz, H., Bohmer, F. D., and Grosse, R. Is Ribonucleotide reductase in ehrlich ascites mammary tumor cells the target of a growth inhibitor purified from bovine mammary gland? Biochem. Biophys. Acta 43: 1377–1383, 1984.

    CAS  Google Scholar 

  62. Rowe, J.M., Kasper, S., Shiu, R.P., and Friesen, H.G. Purification and characterization of a human mammary tumor-derived growth factor. Cancer Res. 46: 1408–1412, 1986.

    PubMed  CAS  Google Scholar 

  63. Hiragun, A., Yoshida, Y., Sata, M., Tominaga, T., and Mitsui, H. Isolation of two syngeneic cell lines from rat mammary carcinoma: growth factor production by neoplastic epithelial cells. J. Natl. Cancer Inst. 75: 471–482, 1985.

    PubMed  CAS  Google Scholar 

  64. Bano, M., Lewki, W.L., and Kidwell, W.R. Characterization of rat mammary tumor cell populations. Cancer Res. 44: 3055–3062, 1984.

    PubMed  CAS  Google Scholar 

  65. Sirbasku, D.A. New concepts in control of estrogen-responsive tumor cell growth. Banbury Report, 8: 425–443, 1981.

    CAS  Google Scholar 

  66. Danielpour, D., and Sirbasku, D.A. Autocrine control of estrogen-responsive mammary tumor cell growth. In Vitro 19: 252, 1983.

    Google Scholar 

  67. Ikeda, T., Danielpour, D., Galle, P., and Sirbasku, D.A. General methods for the isolation of acetic acid and heat-stable polypeptide growth factors for mammary and pituitary tumor cells.InMethods for serum-free culture of cells of the Endocrine system, Barne, D.W., Sirbasku, D.A,, and Sato, H.H. (eds.), Cell Culture Methods Molecular and Cell Biol., Vol. 2, Alan R. Liss, New York, 1984, pp. 217–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Kidwell, W.R., Mohanam, S., Salomon, D.S. (1987). Growth Factor Production by Mammary Tumor Cells. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics