Endothelial Cell-Extracellular Matrix Interactions

Matrix as a Modulator of Cell Function
  • Joseph A. Madri
  • Bruce M. Pratt
  • Judith Yannariello-Brown


The role of extracellular matrix as a modulator of cell behavior is widely accepted and is currently under intensive study by a number of investigators using diverse cell, tissue, and organ culture systems.10,34 Several general findings have emerged from this work, namely, that cell behavior is dramatically different when cells are grown and maintained on extracellular matrix as compared to tissue culture plastic or glass; and that cell behavior can be modulated, depending on the composition and organization of the matrix component(s) or tissue used.35 For example, in recent studies Lwebuga-Mukasa et al. have demonstrated that cultured type II pneumocytes exhibit variable behavior patterns, depending on the nature of the underlying matrix on which they are cultured. When cultured on the stromal aspect of the acellular amnionic membrane, these cells appear flattened, having few cytoplasmic lamellar bodies, basolateral junctional complexes, and apical microvilli. In contrast, when cultured on the basement membrane surface of the amnion, they maintain their cuboidal morphology and have abundant microvilli, basolateral junctional complexes, and cytoplasmic lamellar bodies.21,22 Additionally, in both instances the cultured cells produce a basal lamina-like structure. Conversely, when cultured and maintained on an acellular pulmonary basement membrane, these cells do not synthesize a basal lamina. With time they become flattened and attenuated, losing their cytoplasmic lamellar bodies and apical microvilli but maintaining their basolateral junctional complexes, suggesting a “differentiation” into type I pneumocytes.22 As a further example, Ingber et al. have studied the effects of extracellular matrix on the behavior of rat pancreatic adenocarcinoma cells. This tumor exhibits cytodifferentiation in vivo when closely associated with vascular or peritoneal connective tissue, suggesting the possibility


Microvascular Endothelial Cell Capillary Endothelial Cell Corneal Stroma Bovine Aortic Endothelial Cell Basement Membrane Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, S. S., Malinoff, H. L., and Wicha, M. S., 1983, Connectin: Cell surface protein that binds both laminin and actin, Proc. Natl. Acad. Sci. USA 80:5927-5930.Google Scholar
  2. 2.
    Carley, W., Milici, A. J., and Madri, J. A., 1986,Extracellular matrix specificity for the differentiation of capillary endothelial cells, Fed. Proc. 45:1152.Google Scholar
  3. 3.
    Chen, W.-T., Hasegawa, E., Hasegawa, T., Weinstock, C., and Yamada, K. M., 1985, Development of cell surface linkage complexes in cultured fibroblasts,J. Cell Biol. 100:1103–1114.PubMedCrossRefGoogle Scholar
  4. 4.
    Fitzgerald, L. A., Charo, I. F., and Phillips, D. R., 1985,Human and bovine endothelial cells synthesize membranes similar to human platelet glycoproteins lib and Ilia, J. Biol. Chem. 260:10893–10896.PubMedGoogle Scholar
  5. 5.
    Folkman, J., and Haudenschild, C., 1980, Angiogenesis in vitro, Nature 32:551–556.CrossRefGoogle Scholar
  6. 6.
    Form, D. M., and Madri, J. A., 1985, Proliferation of microvascular endothelial cells in vitro: Modulation by extracellular matrix, Fed. Proc. 44:1660.Google Scholar
  7. 7.
    Form, D. M., Pratt, B. M., and Madri, J. A., 1986, Endothelial cell proliferation during angiogenesis: In vitro modulation by basement membrane components, Lab. Invest. 55:521–530.PubMedGoogle Scholar
  8. 8.
    Gotlieb, A. I., Spector, W., Wong, M. K. K., and Lacey, C., 1984, In vitro re-endothelialization: Microfilament bundle reorganization in migrating porcine endothelial cells, Arteriosclerosis 4:91–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Gotlieb, A. I., Subrahmanyan, L., and Kalnins, V. I., 1983, Microtubule-organizing centers and cell migration: Effect of inhibition of migration and microtubule disruption in endothelial cells, J. Cell Biol. 96:1266–1272.PubMedCrossRefGoogle Scholar
  10. 10.
    Hay, E. D., 1982, Cell Biology of Extracellular Matrix, Plenum Press, New York.Google Scholar
  11. 11.
    Hayman, E. G., Pierschbacher, M. D., and Rouslahti, E., 1985, Detachment of cells from culture substrate by soluble fibronectin peptides, J. Cell Biol. 100:1948–1954.PubMedCrossRefGoogle Scholar
  12. 12.
    Hinter, H., Fritsch, P. O., Foidart, J.-M., Stingl, G., Schuler, G., and Katz, S. I., 1980, Expression of basement membrane zone antigens at the dermo-epibolic junction in organ cultures of human skin, J. Invest. Dermatol. 74:200–204.CrossRefGoogle Scholar
  13. 13.
    Horwitz, A., Duggan, K., Greggs, R., Decker, C., and Buck, C., 1985, The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin, J. Cell Biol. 101:2134–2144.PubMedCrossRefGoogle Scholar
  14. 14.
    Ingber, D. E., Madri, J. A., and Jamieson, J. D., 1981, Role of basal lamina in neoplastic disorganization of tissue architecture, Proc. Natl. Acad. Sci. USA 78:3901-3905.Google Scholar
  15. 15.
    Ingber, D. E., Madri, J. A., and Jamieson, J. D., 1985, Basement membrane as a spatial organizer of polarized epithelia. I. Neoplastic disorganization of pancreatic epithelium correlates directly with loss of basement membrane, Am. J. Pathol. 121:248–260.PubMedGoogle Scholar
  16. 16.
    Ingber, D. E., Madri, J. A., and Jamieson, J. D., 1986, Basement membrane as a spatial organizer of polarized epithelia. II. Exogenous basement membrane regulates cell shape and reorients pancreatic epithelial tumor cells in vitro, Am. J. Pathol. 122:129–139.PubMedGoogle Scholar
  17. 17.
    Kirschner, M., and Mitchison, T., 1986, Beyond self-assembly: From microtubules to morphogenesis, Cell 45:329–342.PubMedCrossRefGoogle Scholar
  18. 18.
    Kurkinen, M., Taylor, A., Garrels, J. I., and Hogan, B. L. M., 1984, Cell surface associated proteins which bind native type IV collagen or gelatin, J. Biol. Chem. 259:5915–5922.PubMedGoogle Scholar
  19. 19.
    Leto, T. L., Pratt, B. M., and Madri, J. A., 1986, Mechanisms of cytoskeletal regulation: Modulation of aortic endothelial cell protein band 4.1 by extracellular matrix, J. Cell. Physiol. 127:423–431.PubMedCrossRefGoogle Scholar
  20. 20.
    Liotta, L., Rao, C. N., and Wewer, U., 1986, Biochemical interactions of tumor cells with the basement membrane,Annu. Rev. Biochem. 55:1037-1057.CrossRefGoogle Scholar
  21. 21.
    Lwebuga-Mukasa, J., Thulin, G., Madri, J. A., Barrett, C., and Warsaw, J., 1984, An acellular human amnionic membrane model for in vitro culture of type II pneumocytes: The role of the basement membrane on cell morphology and function,J. Cell. Physiol. 121:215–225.PubMedCrossRefGoogle Scholar
  22. 22.
    Lwebuga-Mukasa, J., Ingbar, D., and Madri, J. A., 1986, Repopulation of a human alveolar matrix by adult rat type II pneumocytes in vitro: A novel system for type II pneumocyte culture, Exp. Cell Res. 162:423–435.PubMedCrossRefGoogle Scholar
  23. 23.
    Maciag, T., Kadish, J., Wilkins, L., Stemerman, M. P., and Weinstein, R., 1982, Organizational behavior of human umbilical vein endothelial cells, J. Cell Biol. 94:511–520.PubMedCrossRefGoogle Scholar
  24. 24.
    Madri, J. A., 1982, Endothelial cell-matrix interactions in hemostasis, in: Progress in hemostasis and Thrombosis (T.H. Spaet.), Grune & Stratton, New York, pp 1–24.Google Scholar
  25. 25.
    Madri, J. A., Dreyer, B., Pitlick, F. A., and Furthmayr, H., 1980, The collagenous components of the subendothelium: Correlation of structure and function, Lab. Invest. 43:303–315.PubMedGoogle Scholar
  26. 26.
    Madri, J. A., and Pratt, B. M., 1986, Endothelial cell-matrix interactions: In vitro models of angiogenesis, J. Histochem. Cytochem. 34:85–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Madri, J. A., and Pratt, B. M., 1988, Angiogenesis, in: The Molecular and Cellular Biology of Wound Repair (R. Clark P. Hensoneds.), Plenum Press, New York (in press).Google Scholar
  28. 28.
    Madri, J. A., and Stenn, K. S., 1982, Aortic endothelial cell migration. I. Matrix requirements and composition, Am. J. Pathol. 106:180–186.PubMedGoogle Scholar
  29. 29.
    Madri, J. A., and Williams, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.PubMedCrossRefGoogle Scholar
  30. 30.
    Milici, A. J., Furie, M. B., and Carley, W. W, 1985, The forma tion of fenestrations and channels by capillary endothelium in vitro, Proc. Natl. Acad. Sci. USA 82:6181-6185.Google Scholar
  31. 31.
    Mollenhauer, J, and Von der Mark, K., 1983, Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes, EMBO J. 2:45–50.PubMedGoogle Scholar
  32. 32.
    Montesano, R., Orci, L., and Vassakkum, P., 1983, In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices, J. Cell Biol. 97:1648–1652.PubMedCrossRefGoogle Scholar
  33. 33.
    Palotie, A., Tryggvason, K., Peltonen, L., and Seppa, H., 1983, Components of subendothelial aorta basement membrane: Immunohistochemical localization and role in cell attachment,Lab. Invest. 49:362–370.PubMedGoogle Scholar
  34. 34.
    Porter, R., and Whelan, J., 1984, Basement Membranes and Cell Movement, Pitman, London.Google Scholar
  35. 35.
    Pratt, B. M., Form, D., and Madri, J. A., 1985, Endothelial cell-extracellular matrix interactions, in: Biology, Chemistry and Pathology of Collagen (R. Fleischmajer, B.R. Olsen, K. Kuhn eds.), New York Academy of Sciences, New York, pp 274–288.Google Scholar
  36. 36.
    Pratt, B. M., Harris, A. S., Morrow, J. S., and Madri, J. A., 1984, Mechanisms of cytoskeletal regulation: Modulation of aortic endothelial cell spectrin by extracellular matrix, Am. J. Pathol. 117:349–354.PubMedGoogle Scholar
  37. 37.
    Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985, Identification and isolation of a 140kD cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40:191–198.PubMedCrossRefGoogle Scholar
  38. 38.
    Rao, N. C., Barsky, S. H., Terranova, V. P., and Liotta, L. A., 1983, Isolation of a tumor cell laminin receptor,Biochem. Biophys. Res. Commun. 111:804–808.PubMedCrossRefGoogle Scholar
  39. 39.
    Reidy, M. A., and Silver, M., 1985, Endothelial regeneration. VII. Lack of intimal proliferation after defined injury to rat aorta, Am. J. Pathol. 118:173–177.PubMedGoogle Scholar
  40. 40.
    Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-gly-asp: A versatile cell recognition signal,Cell 44:517–518.CrossRefGoogle Scholar
  41. 41.
    Wong, A. J., Pollard, T. D., and Herman, I. M., 1983, Actin filament stress fibers in vascular endothelial cells in vivo, Science 219:867–869.PubMedCrossRefGoogle Scholar
  42. 42.
    Woods, A., Hook, M., Kjellen, L., Smith, C. G., and Rees, D. A., 1984, Relationship of heparan. sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts, J. Cell Biol. 99:1743–1753.PubMedCrossRefGoogle Scholar
  43. 43.
    Yannariello-Brown, J., and Madri, J. A., 1985,Aortic endothelial cells synthesize specific binding proteins for laminin and type IV collagen, J. Cell Biol. 101:333a.Google Scholar
  44. 44.
    Yannariello-Brown, J., Tchao, N. K., Liotta, L., and Madri, J. A., 1985, Co-distribution of the laminin receptor with actin microfilaments in permeabilized aortic and microvascular endothelial cells, J. Cell Biol. 101:333a.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Joseph A. Madri
    • 1
  • Bruce M. Pratt
    • 1
  • Judith Yannariello-Brown
    • 1
  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA

Personalised recommendations