Skip to main content

Endothelial Cell-Extracellular Matrix Interactions

Matrix as a Modulator of Cell Function

  • Chapter
Endothelial Cell Biology in Health and Disease

Abstract

The role of extracellular matrix as a modulator of cell behavior is widely accepted and is currently under intensive study by a number of investigators using diverse cell, tissue, and organ culture systems.10,34 Several general findings have emerged from this work, namely, that cell behavior is dramatically different when cells are grown and maintained on extracellular matrix as compared to tissue culture plastic or glass; and that cell behavior can be modulated, depending on the composition and organization of the matrix component(s) or tissue used.35 For example, in recent studies Lwebuga-Mukasa et al. have demonstrated that cultured type II pneumocytes exhibit variable behavior patterns, depending on the nature of the underlying matrix on which they are cultured. When cultured on the stromal aspect of the acellular amnionic membrane, these cells appear flattened, having few cytoplasmic lamellar bodies, basolateral junctional complexes, and apical microvilli. In contrast, when cultured on the basement membrane surface of the amnion, they maintain their cuboidal morphology and have abundant microvilli, basolateral junctional complexes, and cytoplasmic lamellar bodies.21,22 Additionally, in both instances the cultured cells produce a basal lamina-like structure. Conversely, when cultured and maintained on an acellular pulmonary basement membrane, these cells do not synthesize a basal lamina. With time they become flattened and attenuated, losing their cytoplasmic lamellar bodies and apical microvilli but maintaining their basolateral junctional complexes, suggesting a “differentiation” into type I pneumocytes.22 As a further example, Ingber et al. have studied the effects of extracellular matrix on the behavior of rat pancreatic adenocarcinoma cells. This tumor exhibits cytodifferentiation in vivo when closely associated with vascular or peritoneal connective tissue, suggesting the possibility

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, S. S., Malinoff, H. L., and Wicha, M. S., 1983, Connectin: Cell surface protein that binds both laminin and actin, Proc. Natl. Acad. Sci. USA 80:5927-5930.

    Google Scholar 

  2. Carley, W., Milici, A. J., and Madri, J. A., 1986,Extracellular matrix specificity for the differentiation of capillary endothelial cells, Fed. Proc. 45:1152.

    Google Scholar 

  3. Chen, W.-T., Hasegawa, E., Hasegawa, T., Weinstock, C., and Yamada, K. M., 1985, Development of cell surface linkage complexes in cultured fibroblasts,J. Cell Biol. 100:1103–1114.

    Article  PubMed  CAS  Google Scholar 

  4. Fitzgerald, L. A., Charo, I. F., and Phillips, D. R., 1985,Human and bovine endothelial cells synthesize membranes similar to human platelet glycoproteins lib and Ilia, J. Biol. Chem. 260:10893–10896.

    PubMed  CAS  Google Scholar 

  5. Folkman, J., and Haudenschild, C., 1980, Angiogenesis in vitro, Nature 32:551–556.

    Article  Google Scholar 

  6. Form, D. M., and Madri, J. A., 1985, Proliferation of microvascular endothelial cells in vitro: Modulation by extracellular matrix, Fed. Proc. 44:1660.

    Google Scholar 

  7. Form, D. M., Pratt, B. M., and Madri, J. A., 1986, Endothelial cell proliferation during angiogenesis: In vitro modulation by basement membrane components, Lab. Invest. 55:521–530.

    PubMed  CAS  Google Scholar 

  8. Gotlieb, A. I., Spector, W., Wong, M. K. K., and Lacey, C., 1984, In vitro re-endothelialization: Microfilament bundle reorganization in migrating porcine endothelial cells, Arteriosclerosis 4:91–96.

    Article  PubMed  CAS  Google Scholar 

  9. Gotlieb, A. I., Subrahmanyan, L., and Kalnins, V. I., 1983, Microtubule-organizing centers and cell migration: Effect of inhibition of migration and microtubule disruption in endothelial cells, J. Cell Biol. 96:1266–1272.

    Article  PubMed  CAS  Google Scholar 

  10. Hay, E. D., 1982, Cell Biology of Extracellular Matrix, Plenum Press, New York.

    Google Scholar 

  11. Hayman, E. G., Pierschbacher, M. D., and Rouslahti, E., 1985, Detachment of cells from culture substrate by soluble fibronectin peptides, J. Cell Biol. 100:1948–1954.

    Article  PubMed  CAS  Google Scholar 

  12. Hinter, H., Fritsch, P. O., Foidart, J.-M., Stingl, G., Schuler, G., and Katz, S. I., 1980, Expression of basement membrane zone antigens at the dermo-epibolic junction in organ cultures of human skin, J. Invest. Dermatol. 74:200–204.

    Article  Google Scholar 

  13. Horwitz, A., Duggan, K., Greggs, R., Decker, C., and Buck, C., 1985, The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin, J. Cell Biol. 101:2134–2144.

    Article  PubMed  CAS  Google Scholar 

  14. Ingber, D. E., Madri, J. A., and Jamieson, J. D., 1981, Role of basal lamina in neoplastic disorganization of tissue architecture, Proc. Natl. Acad. Sci. USA 78:3901-3905.

    Google Scholar 

  15. Ingber, D. E., Madri, J. A., and Jamieson, J. D., 1985, Basement membrane as a spatial organizer of polarized epithelia. I. Neoplastic disorganization of pancreatic epithelium correlates directly with loss of basement membrane, Am. J. Pathol. 121:248–260.

    PubMed  CAS  Google Scholar 

  16. Ingber, D. E., Madri, J. A., and Jamieson, J. D., 1986, Basement membrane as a spatial organizer of polarized epithelia. II. Exogenous basement membrane regulates cell shape and reorients pancreatic epithelial tumor cells in vitro, Am. J. Pathol. 122:129–139.

    PubMed  CAS  Google Scholar 

  17. Kirschner, M., and Mitchison, T., 1986, Beyond self-assembly: From microtubules to morphogenesis, Cell 45:329–342.

    Article  PubMed  CAS  Google Scholar 

  18. Kurkinen, M., Taylor, A., Garrels, J. I., and Hogan, B. L. M., 1984, Cell surface associated proteins which bind native type IV collagen or gelatin, J. Biol. Chem. 259:5915–5922.

    PubMed  CAS  Google Scholar 

  19. Leto, T. L., Pratt, B. M., and Madri, J. A., 1986, Mechanisms of cytoskeletal regulation: Modulation of aortic endothelial cell protein band 4.1 by extracellular matrix, J. Cell. Physiol. 127:423–431.

    Article  PubMed  CAS  Google Scholar 

  20. Liotta, L., Rao, C. N., and Wewer, U., 1986, Biochemical interactions of tumor cells with the basement membrane,Annu. Rev. Biochem. 55:1037-1057.

    Article  Google Scholar 

  21. Lwebuga-Mukasa, J., Thulin, G., Madri, J. A., Barrett, C., and Warsaw, J., 1984, An acellular human amnionic membrane model for in vitro culture of type II pneumocytes: The role of the basement membrane on cell morphology and function,J. Cell. Physiol. 121:215–225.

    Article  PubMed  CAS  Google Scholar 

  22. Lwebuga-Mukasa, J., Ingbar, D., and Madri, J. A., 1986, Repopulation of a human alveolar matrix by adult rat type II pneumocytes in vitro: A novel system for type II pneumocyte culture, Exp. Cell Res. 162:423–435.

    Article  PubMed  CAS  Google Scholar 

  23. Maciag, T., Kadish, J., Wilkins, L., Stemerman, M. P., and Weinstein, R., 1982, Organizational behavior of human umbilical vein endothelial cells, J. Cell Biol. 94:511–520.

    Article  PubMed  CAS  Google Scholar 

  24. Madri, J. A., 1982, Endothelial cell-matrix interactions in hemostasis, in: Progress in hemostasis and Thrombosis (T.H. Spaet.), Grune & Stratton, New York, pp 1–24.

    Google Scholar 

  25. Madri, J. A., Dreyer, B., Pitlick, F. A., and Furthmayr, H., 1980, The collagenous components of the subendothelium: Correlation of structure and function, Lab. Invest. 43:303–315.

    PubMed  CAS  Google Scholar 

  26. Madri, J. A., and Pratt, B. M., 1986, Endothelial cell-matrix interactions: In vitro models of angiogenesis, J. Histochem. Cytochem. 34:85–91.

    Article  PubMed  CAS  Google Scholar 

  27. Madri, J. A., and Pratt, B. M., 1988, Angiogenesis, in: The Molecular and Cellular Biology of Wound Repair (R. Clark P. Hensoneds.), Plenum Press, New York (in press).

    Google Scholar 

  28. Madri, J. A., and Stenn, K. S., 1982, Aortic endothelial cell migration. I. Matrix requirements and composition, Am. J. Pathol. 106:180–186.

    PubMed  CAS  Google Scholar 

  29. Madri, J. A., and Williams, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  30. Milici, A. J., Furie, M. B., and Carley, W. W, 1985, The forma tion of fenestrations and channels by capillary endothelium in vitro, Proc. Natl. Acad. Sci. USA 82:6181-6185.

    Google Scholar 

  31. Mollenhauer, J, and Von der Mark, K., 1983, Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes, EMBO J. 2:45–50.

    PubMed  CAS  Google Scholar 

  32. Montesano, R., Orci, L., and Vassakkum, P., 1983, In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices, J. Cell Biol. 97:1648–1652.

    Article  PubMed  CAS  Google Scholar 

  33. Palotie, A., Tryggvason, K., Peltonen, L., and Seppa, H., 1983, Components of subendothelial aorta basement membrane: Immunohistochemical localization and role in cell attachment,Lab. Invest. 49:362–370.

    PubMed  CAS  Google Scholar 

  34. Porter, R., and Whelan, J., 1984, Basement Membranes and Cell Movement, Pitman, London.

    Google Scholar 

  35. Pratt, B. M., Form, D., and Madri, J. A., 1985, Endothelial cell-extracellular matrix interactions, in: Biology, Chemistry and Pathology of Collagen (R. Fleischmajer, B.R. Olsen, K. Kuhn eds.), New York Academy of Sciences, New York, pp 274–288.

    Google Scholar 

  36. Pratt, B. M., Harris, A. S., Morrow, J. S., and Madri, J. A., 1984, Mechanisms of cytoskeletal regulation: Modulation of aortic endothelial cell spectrin by extracellular matrix, Am. J. Pathol. 117:349–354.

    PubMed  CAS  Google Scholar 

  37. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985, Identification and isolation of a 140kD cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40:191–198.

    Article  PubMed  CAS  Google Scholar 

  38. Rao, N. C., Barsky, S. H., Terranova, V. P., and Liotta, L. A., 1983, Isolation of a tumor cell laminin receptor,Biochem. Biophys. Res. Commun. 111:804–808.

    Article  PubMed  CAS  Google Scholar 

  39. Reidy, M. A., and Silver, M., 1985, Endothelial regeneration. VII. Lack of intimal proliferation after defined injury to rat aorta, Am. J. Pathol. 118:173–177.

    PubMed  CAS  Google Scholar 

  40. Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-gly-asp: A versatile cell recognition signal,Cell 44:517–518.

    Article  Google Scholar 

  41. Wong, A. J., Pollard, T. D., and Herman, I. M., 1983, Actin filament stress fibers in vascular endothelial cells in vivo, Science 219:867–869.

    Article  PubMed  CAS  Google Scholar 

  42. Woods, A., Hook, M., Kjellen, L., Smith, C. G., and Rees, D. A., 1984, Relationship of heparan. sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts, J. Cell Biol. 99:1743–1753.

    Article  PubMed  CAS  Google Scholar 

  43. Yannariello-Brown, J., and Madri, J. A., 1985,Aortic endothelial cells synthesize specific binding proteins for laminin and type IV collagen, J. Cell Biol. 101:333a.

    Google Scholar 

  44. Yannariello-Brown, J., Tchao, N. K., Liotta, L., and Madri, J. A., 1985, Co-distribution of the laminin receptor with actin microfilaments in permeabilized aortic and microvascular endothelial cells, J. Cell Biol. 101:333a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Madri, J.A., Pratt, B.M., Yannariello-Brown, J. (1988). Endothelial Cell-Extracellular Matrix Interactions. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Biology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0937-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0937-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8254-9

  • Online ISBN: 978-1-4613-0937-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics