Skip to main content

Abstract

The goal of this chapter is to chart procedures for identifying endothelial transport pathways and mechanisms for water and solutes. An excellent description of the discovery of the microcirculation, of the identification of the capillaries as the main sites of interchange of fluid and solutes, and of the development of the concept of capillary permeability has been written by E. M. Landis.25 In the first half of this century, it was recognized that capillaries in most organs of the body allowed relatively free exchange of water and small solutes (crystalloids), but restricted the escape of plasma proteins and other macromolecules (colloids). In 1896, Ernest Starling53 explained the retention of vascular volume as the result of a balance of the osmotic pressure of plasma colloids and the hydrostatic pressure of capillary blood. Imbalance of hydrostatic and colloid osmotic forces results in fluid movement into or out of the bloodstream. This process is called ultrafiltration. The fluid moved (ultrafiltrate) contains water and small solutes in equilibrium with plasma, but only traces of plasma proteins. The direction and rate of fluid movement are proportional to sign and magnitude of the difference between hydrostatic and effective osmotic forces (positive = outward).24, 35 Exchange of water and solutes smaller than plasma proteins was attributed to passive diffusion.22, 23 Differences in capillary permeability from organ to organ were recognized: the capillaries of the brain were known to be nearly impermeable to ions and small molecules, while the sinusoids of the liver and spleen were known to be permeable to plasma proteins. It was also recognized that capillaries in most organs allowed small (“trace”) amounts of plasma proteins to escape into the interstitial fluid, and that the lost protein was returned to the bloodstream by the lymphatics.16, 29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areekul, S., 1969, Reflection coefficients of neutral and sulphate-substituted dextran molecules in isolated perfused rabbit ear, Acta Soc. Med. Ups. 74:129–138.

    PubMed  CAS  Google Scholar 

  2. Brace, R. A., Granger, D. N., and Taylor, A. E., 1977, Analysis of lymphatic protein flux data. II. Effects of capillary heteroporosity on estimates of reflection coefficients and PS products, Microvasc. Res. 14:215–226.

    Article  PubMed  CAS  Google Scholar 

  3. Brace, R. A., Granger, D. N., and Taylor, A. E., 1978, Analysis of lymphatic protein flux data. III. Use of the nonlinear flux equation to estimate sigma and PS, Microvasc. Res. 16:297–303.

    Article  PubMed  CAS  Google Scholar 

  4. Carter, R. D., Joyner, W. L., and Renkin, E. M., 1974, Effect of histamine and some other substances on molecular selectivity of the capillary wall to plasma proteins and dextran, Microvasc. Res.7:31–48.

    Article  PubMed  CAS  Google Scholar 

  5. Chambers, R., andZweifach, B. W., 1947, Intercellular cement and capillary permeability, Physiol. Rev.27:436–463.

    PubMed  CAS  Google Scholar 

  6. Crone, C., 1965, The permeability of brain capillaries to nonelectrolytes, Acta Physiol. Scand. 64:407–417.

    Article  PubMed  CAS  Google Scholar 

  7. Crone, C., Frokjaer-Jensen, J., Friedman, J. J., and Christensen, O., 1978, The permeability of single capillaries to potassium ions, J. Gen. Physiol.71:195–220.

    Article  PubMed  CAS  Google Scholar 

  8. Crone, C., andLevitt, D., 1984, Capillary permeability to small solutes, in: Handbook of Physiology, Sect. 2, Vol. IV (E.M. Renkin C.C. Micheleds.) American Physiological Society, Bethesda, pp. 411–466.

    Google Scholar 

  9. Curry, F. E., 1981, Effects of temperature on hydraulic conductivity of single capillaries, Am. J. Physiol. 240:H29–H32.

    Google Scholar 

  10. Curry, F. E., 1984, Mechanics and thermodynamics of transcapillary exchange, in: Handbook of Physiology, Sect. 2, Vol. IV (E.M. Renkin C.C. Michel, eds.) American Physiological Society, Bethesda, pp. 309–374.

    Google Scholar 

  11. Curry, F. E., and Frokjaer-Jensen, J., 1984, Water flow across the walls of single muscle capillaries in the frog, Rana pipens, J. Physiol. (London) 350:293–307.

    CAS  Google Scholar 

  12. Curry, F. E., andMichel, C. C., 1980, A fiber matrix model of capillary permeability, Microvasc. Res. 20:96–99.

    Article  PubMed  CAS  Google Scholar 

  13. Curry, F. E., Mason, J. C., andMichel, C. C., 1976, Osmotic reflexion coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery, J. Physiol. (London) 261:319–336.

    PubMed  CAS  Google Scholar 

  14. Deen, W. M., Bridges, C. R., and Brenner, B. M., 1983, Biophysical basis of glomerular permeability, J. Membr. Biol. 71:1–10.

    Article  PubMed  CAS  Google Scholar 

  15. Deen, W. M., Satvat, B., and Jamieson, J. M., 1980, Theoretical model for glomerular filtration of charged solutes, Am. J. Physiol. 238F126–F139.

    Google Scholar 

  16. Drinker, C. K., 1946, Extravascular protein and the lymphatic system, Ann. N.Y. Acad. Sci.46:807–821.

    Article  CAS  Google Scholar 

  17. Garlick, D. G., andRenkin, E. M., 1970, Transport of large molecules from plasma to interstitial fluid and lymph in dogs, Am. J. Physiol. 219:1595–1605.

    PubMed  CAS  Google Scholar 

  18. Granger, D. N., andTaylor, A. E., 1980, Permeability of intestinal capillaries to exogenous macromolecules, Am. J. Physiol. 238:H457–H464.

    Google Scholar 

  19. Grotte, G., 1956, Passage of dextran molecules across the blood-lymph barrier, Acta Chir. Scand. Suppl. 211:1–84.

    PubMed  CAS  Google Scholar 

  20. Haraldsson, B., Eckholm, C., andRippe, B., 1983, Importance of molecular charge for passage of endogenous macromolecules across capillary walls, studied by serum clearance of lactate dehydrogenase isoenzymes, Acta Physiol. Scand. 117:123–130.

    Article  PubMed  CAS  Google Scholar 

  21. House, C. R., 1974, Water Transport in Cells and Tissues, Arnold, London.

    Google Scholar 

  22. Krogh, A., 1929, The Anatomy and Physiology of Capillaries, Rev. ed., Yale University Press, New Haven, Conn.

    Google Scholar 

  23. Kruhoffer, P., 1946, The significance of diffusion and convection for distribution of solutes in interstitial space, Acta Physiol. Scand. 11:37–47.

    Article  CAS  Google Scholar 

  24. Landis, E. M., 1927, Micro-injection studies of capillary permeability. II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries, Am. J. Physiol. 82:217–238.

    Google Scholar 

  25. Landis, E. M., 1964, The capillary circulation, in: Circulation of the Blood, Men and Ideas (A.P. Fishman D.W. Richards), Oxford University Press, London, pp 355–406. (Reprinted by the American Physiological Society, 1982.)

    Google Scholar 

  26. Landis, E. M., andPappenheimer, J. R., 1963, Exchange of substances through the capillary walls, in: Handbook of Physiology, Sect. 2, Vol. II (W.F. Hamilton P. Dow, American Physiological Society, Washington, D.C., pp. 961–1034.

    Google Scholar 

  27. Majno, G., 1963, Ultrastructure of the vascular membrane, in: Handbook of Physiology, Sect. 2, Vol. II (W.F. Hamilton P. Dow eds.), American Physiological Society, Washington, D.C., pp. 2293–2375.

    Google Scholar 

  28. Mason, J. C., Curry, F. E., and Michel, C. C., 1977, The effects of proteins upon the filtration coefficients of individually perfused frog mesenteric capillaries, Microvasc. Res. 13:185–202.

    Article  PubMed  CAS  Google Scholar 

  29. Mayerson, H. S., 1963, The physiologic importance of lymph, in: Handbook of Physiology, Sect. 2, Vol. II (W.F. Hamilton P. DowAmerican Physiological Society, Washington, D.C., pp. 1035–1073.

    Google Scholar 

  30. Michel, C. C., 1981, Flow of water through the capillary wall, in: Water Transport Across Epithelia: Barriers, Gradients and Mechanisms (H.H. Ussing, N. Bindslev, N.A. Larsen, O. Sten-Kundseneds.), Munksgaard, Copenhagen,pp. 268–279.

    Google Scholar 

  31. Michel, C. C., 1984, Fluid movements through capillary walls, in: Handbook of Physiology,Sect. 2, Vol. IV (E.M. Renkin C.C. Michel), American Physiological Society, Bethesda, pp. 375–409.

    Google Scholar 

  32. Oleson, S.-P., and Crone, C., 1983, Electrical resistance of muscle capillary endothelium, Biophys. J. 42:31–41.

    Article  Google Scholar 

  33. Pappenheimer, J. R., 1953, Passage of molecules through capillary walls, Physiol. Rev. 33:387–423.

    PubMed  CAS  Google Scholar 

  34. Pappenheimer, J. R., Renkin, E. M., and Borrero, L. M., 1951, Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability, Am. J. Physiol. 167:13–46.

    PubMed  CAS  Google Scholar 

  35. Pappenheimer, J. R., andSoto-Rivera, A., 1948, Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs, Am. J. Physiol. 152:471–491.

    PubMed  CAS  Google Scholar 

  36. Pardridge, W. M., andLandau, E., 1984, Tracer kinetic model of blood-brain barrier transport of plasma protein-bound ligands, J. Clin. Invest. 74:745–752.

    Article  PubMed  CAS  Google Scholar 

  37. Pardridge, W. M., andOldendorf, W. H., 1977, Transport of metabolic substrates through the blood-brain barrier, J. Neurochem. 28:5–12.

    Article  PubMed  CAS  Google Scholar 

  38. Pardridge, W. M., Eisenberg, J., andYang, J., 1985, Human blood-brain barrier insulin receptor, J. Neurochem. 44:1771–1778.

    Article  PubMed  CAS  Google Scholar 

  39. Patlak, C. S., Goldstein, D. A., and Hoffman, J. F., 1963, The flow of solute and solvent across a two-membrane system, J. The or. Biol. 5:426–442.

    CAS  Google Scholar 

  40. Perry, M. A., Benoit, J. N., Kvietys, P. R., andGranger, D. N., 1983, Restricted transport of cationic macromolecules across intestinal capillaries, Am. J. Physiol. 245:G568–G572.

    Google Scholar 

  41. Renkin, E. M., 1952, Capillary permeability to lipid-soluble molecules, Am. J. Physiol. 168:538–545.

    PubMed  CAS  Google Scholar 

  42. Renkin, E. M., 1953, Capillary and cellular permeability to some compounds related to antipyrine, Am. J. Physiol. 173:125–130.

    PubMed  CAS  Google Scholar 

  43. Renkin, E. M., 1954, Filtration, diffusion and molecular sieving through porous cellulose membranes, J. Gen. Physiol. 38:225–243.

    PubMed  CAS  Google Scholar 

  44. Renkin, E. M., 1977, Multiple pathways of capillary permeability, Circ. Res. 41:735–743.

    PubMed  CAS  Google Scholar 

  45. Renkin, E. M., 1985, Capillary transport of macromolecules: Pores and other endothelial pathways, J. Appl. Physiol. 58:315–325.

    PubMed  CAS  Google Scholar 

  46. Renkin, E. M., andCurry, F. E., 1978, Transport of water and solutes across capillary endothelium, in: Membrane Transport in Biology, Vol. IV (G. Giebisch, D.C. Tosteson, H.H. Ussing), Springer-Verlag, Berlin, pp 1–45.

    Google Scholar 

  47. Renkin, E. M., andPappenheimer, J. R., 1957, Wasserdurchlassigkeit und Permeabilitat der Capillarwande, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 49:59–126.

    CAS  Google Scholar 

  48. Renkin, E. M., Watson, P. D., Sloop, C. H., Joyner, W. L., and Curry, F. E., 1977, Transport pathways for fluid and large molecules in microvascular endothelium of the dog’s paw,Microvasc. Res. 14:205–214.

    Article  PubMed  CAS  Google Scholar 

  49. Rippe, B., Kamiya, A., andFolkow, B., 1979, Transcapillary passage of albumin, effects of tissue cooling and increases in filtration and plasma colloid osmotic pressure, Acta Physiol. Scand. 105:171–187.

    Article  PubMed  CAS  Google Scholar 

  50. Scow, R. O., Blanchette-Mackie, E. J., andSmith, L. C., 1976, Role of capillary endothelium in the clearance of chylomicrons; a model for lipid transport from blood by lateral diffusion in cell membranes, Circ. Res. 39:149–162.

    PubMed  CAS  Google Scholar 

  51. Shea, S. M., Karnovsky, M. J., andBossert, W. H., 1969, Vesicle transport across endothelium; simulation of a diffusion model, J. Theor. Biol. 24:30–42.

    Article  PubMed  CAS  Google Scholar 

  52. Simionescu, M., andSimionescu, N., 1984, Ultrastructure of the microvascular wall: Functional correlations, in: Handbook of Physiology, Sect. 2, Vol. IV, American Physiological Society, Bethesda, pp. 41–101.

    Google Scholar 

  53. Starling, E. H., 1896, On the absorption of fluids from the connective tissue spaces, J. Physiol. (London) 19:312–326.

    PubMed  CAS  Google Scholar 

  54. Svensjo, E., Arfors, K.-E., and Grega, G. J., 1979, Morphological and physiological correlation of bradykinin-induced macromolecular efflux, Am. J. Physiol. 236:H600–H606.

    Google Scholar 

  55. Taylor, A. E., and Granger, D. N., 1983, Equivalent pore modeling: Vesicles and channels, Fed. Proc. 42:2440–2445.

    PubMed  CAS  Google Scholar 

  56. Taylor, A. E., andGranger, D. N., 1984, Exchange of macromolecules across the microcirculation, in: Handbook of Physiology, Sect. 2, Vol. IV, (E.M. Renkin C.C. Michel.)American Physiological Society, Bethesda, pp. 467–520.

    Google Scholar 

  57. Wolf, M. B., and Watson, P. D., 1985, Effect of temperature on transcapillary water movementin isolated cat hindlimb, Am. J. Physiol. 249:H792–H798.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Renkin, E.M. (1988). Transport Pathways and Processes. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Biology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0937-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0937-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8254-9

  • Online ISBN: 978-1-4613-0937-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics