Prelesional Changes of Arterial Endothelium in Hyperlipoproteinemic Atherogenesis

  • Nicolae Simionescu


A crucial issue in atherosclerosis research has been to identify the earliest lesion and thus to determine the factors and mechanisms which initiate the disease process. The most widely recognized early alteration is the appearance of fatty streaks the hallmark of which is the accumulation of intracellular and extracellular cholesterol. Very little is known about the subtle cellular and molecular changes of the vessel wall that predispose and precede the inception of an atherosclerotic plaque.


Aortic Arch Foam Cell Artery Wall Lipoprotein Particle Unesterified Cholesterol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akimova, E. J., and Melgunov, V. I., 1984, Apolipoprotein B: Removal of lipids by sodium cholate and reassociation of a lipid-free apoprotein with dipalmitoyl phosphatidylcholine, Biochem. Int. 9:463–473.PubMedGoogle Scholar
  2. 2.
    Badimon, J. J., Kottke, B. A., Chen, T. C., Chan, L., and Mao, S. J. T., 1986, Quantification and immunolocalization of apoprotein E in experimental atherosclerosis, Atherosclerosis 61:57–66PubMedCrossRefGoogle Scholar
  3. 3.
    Baker, D. P., Van Lenten, B. J., Fogelman, A. M., Edwards, P. A., Kean, C., and Berliner, J. A., 1984, LDL, scavenger and (3-VLDL receptors on aortic endothelial cells, Arteriosclerosis 4:248–255.PubMedCrossRefGoogle Scholar
  4. 4.
    Basu, S. K., Ho, Y. K., Brown, M. S., Bilheimer, D. W., Anderson, R. G. W., and Goldstein, J. L., 1982, Biochemical and genetic studies of the apoprotein E secreted by mouse macrophages and human monocytes, J. Biol. Chem. 257:9788–9795.PubMedGoogle Scholar
  5. 5.
    Berberian, P. A., Jenison, M. W., and Roddick, V., 1985, Arterial prostaglandins and lysosomal function during atherogenesis. II. Isolated cells of diet-induced atherosclerotic aortas of rabbits, Exp. Mol. Pathol. 43:36–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Berliner, J. A., Territo, M., and Fogelman, A. M., 1984, Monocyte chemotactic factor produced by large vessel endothelial cells, Arteriosclerosis 4:524a.Google Scholar
  7. 7.
    Bocan, T. M. A., and Guyton, J. R., 1985, Human aortic fibrolipid lesions: Progenitor lesions for fibrous plaque, exhibiting early formation of the cholesterol-rich core, Am. J. Pathol. 120:193–206PubMedGoogle Scholar
  8. 8.
    Bocan, T. M. A., Brown, S. A., Krohn, N. J., and Guyton, J. R., 1986, Human aortic fibrolipid lesions: Immunocytochemical localization of apolipoprotein A and B, Arteriosclerosis 6:557a.Google Scholar
  9. 9.
    Bocan, T. M. A., Schifani, T. A., and Guyton, J. R., 1986, Ultrastructure of the human aortic fibrolipid lesion: Formation of the atherosclerotic lipid-rich core, Am. J. Pathol. 123:413–424.PubMedGoogle Scholar
  10. 10.
    Borsum, T., Henriksen, T., and Reisvaag, A., 1985, Oxidized low density lipoprotein can reduce the pinocytic activity in cultured human endothelial cells as measured by cellular uptake of [14C] sucrose, Atherosclerosis 58:81–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Camejo, G., Hurt, E., and Romano, M., 1985,Properties of lipoprotein complexes isolated by affinity chromatography from human aorta, Biomed. Biochim. Acta 44:389–401.PubMedGoogle Scholar
  12. 12.
    Carew, T. E., Pittman, R. C., Marchaud, E. R., and Steinberg, D., 1984, Measurement in vivo of irreversible degradation of low density lipoprotein in the rabbit aorta, Arteriosclerosis 4:214–224.PubMedCrossRefGoogle Scholar
  13. 13.
    Clevidence, B. A., Morton, R. E., West, G., Dusek, D. M., and Hoff, H., 1984, Cholesterol esterification in macrophages: Stimulation by lipoproteins containing apo B isolated from human aortas, Arteriosclerosis 4:196–207.PubMedCrossRefGoogle Scholar
  14. 14.
    Coetzee, G. A., Stein, O., and Stein, Y., 1979, Uptake and degradation of low density lipoproteins (LDL) by confluent, contact-inhibited bovine and human endothelial cells exposed to physiological concentration of LDL, Atherosclerosis 33:425–431.PubMedCrossRefGoogle Scholar
  15. 15.
    Daugherty, A., Lange, L. G., Sobel, B. E., and Schonfeld, G., 1985, Aortic accumulation and plasma clearance of (3-VLDL and HDL: Effects of diet-induced hypercholesterolemia in rabbits, J. Lipid Res. 26:955–963.PubMedGoogle Scholar
  16. 16.
    DeLamatre, Y., Wolfhauer, G., Phillips, M. C., and Rothblat, G. H., 1986, Role of apolipoproteins in cellular cholesterol efflux, Biochim. Biophys. Acta 875:419–428.PubMedGoogle Scholar
  17. 17.
    Deliconstantinos, G., Tsopanakis, C., Karayiannakos, P., and Skalkeas, G., 1986, Evidence for the existence of non-esterified cholesterol carried by albumin in rat serum, Atherosclerosis 61:67–75.PubMedCrossRefGoogle Scholar
  18. 18.
    Desai, K. S., Gotlieb, A. I., and Steiner, G., 1985, Very low density lipoprotein binding to cultured aortic endothelium, Can. J. Physiol. Pharmacol. 63:809–815.PubMedCrossRefGoogle Scholar
  19. 19.
    Driscoll, D. M., and Getz, G. S., 1984, Extrahepatic synthesis of apolipoprotein E, J. Lipid Res. 25:1368–1375.PubMedGoogle Scholar
  20. 20.
    Elshourbagy, N. A., Liao, W. S., Mahley, R. W., and Taylor, J. M., 1985, Apolipoprotein E mRNA is abundant in the brain and adrenals as well as in the liver, and is present in other peripheral tissues of rats and marmosets, Proc. Natl. Acad. Sci. USA 82:203-207.Google Scholar
  21. 21.
    Eskenasy, M., Mora, M., and Simionescu, N., 1984, In vitro study of low density lipoproteincollagen interaction, Morphol. Embryol. 30:147–152.Google Scholar
  22. 22.
    Faggiotto, A., Ross, R., and Harker, L., 1984, Studies on hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation, Arteriosclerosis 4:323–340.PubMedCrossRefGoogle Scholar
  23. 23.
    Faggiotto, A., and Ross, R., 1984, Studies on hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque, Arteriosclerosis 4:341–356.PubMedCrossRefGoogle Scholar
  24. 24.
    Falcone, D. J., Mated, N., Shio, H., Minick, C. R., and Fowler, S. D., 1984, Lipoproteinheparin-fibronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages, J. Cell Biol. 99:1266-1274.Google Scholar
  25. 25.
    Feldman, D. L., Hoff, H. F., and Gerrity, R. G., 1982,Immunocytochemical localization of LDL in aortas of hyperlipemic swine, Fed. Proc. 41:321.Google Scholar
  26. 26.
    Fielding, C. J., 1984, The origin and properties of free cholesterol potential gradients in plasma, and their relation to atherogenesis, J. Lipid Res. 25:1624–1628.PubMedGoogle Scholar
  27. 27.
    Fielding, P. E., Vlodansky, I., Gospodarowicz, D., and Fielding, C. J., 1979, Effect of contact inhibition on the regulation of cholesterol metabolism in cultured vascular endothelial cells, J. Biol. Chem. 254:749–755.PubMedGoogle Scholar
  28. 28.
    Filip, D. A., Nistor, A., Bulla, A., Radu, A., Lupu, F., and Simionescu, M., 1987, Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia, Atherosclerosis 67:199–214.PubMedCrossRefGoogle Scholar
  29. 29.
    Fischer, G. M., Cherian, K., and Swain, M. L., 1981, Increased synthesis of aortic collagen and elastin in experimental atherosclerosis, Atherosclerosis 39:463–467.PubMedCrossRefGoogle Scholar
  30. 30.
    Gaffney, J., West, D., Arnold, F., Sattar, A., and Kumar, S., 1985, Differences in the uptake of modified low density lipoproteins by tissue cultured endothelial cells, J. Cell Sci. 79:317–325.PubMedGoogle Scholar
  31. 31.
    Georgescu, L., Antohe, F., and Simionescu, N., 1986, The permeability of aortic endothelium to 125I-BSA in hyperlipidemic hamster: Effect of histamine and serotonin, Rev. Roum. Physiol. 23:221–225.Google Scholar
  32. 32.
    Gerrity, R. G., 1981, The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions, Am. J. Pathol. 103:181–190.PubMedGoogle Scholar
  33. 33.
    Gerrity, R. G., Naito, H. K., Richardson, M., and Schwartz, C. J., 1979, Dietary induced atherogenesis in swine: Morphology of the intima in prelesional stages, Am. J. Pathol. 95:775–792.PubMedGoogle Scholar
  34. 34.
    Gerrity, R. G., and Goss, J. A., 1983, A monocyte chemotactic factor from lesion prone areas of swine aorta, Circulation 68(Suppl. 3):301.Google Scholar
  35. 35.
    Gerrity, R. G., Goss, J. A., and Soby, L., 1985, Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta, Arteriosclerosis 5:55–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Ghinea, N., Leabu, M., Hasu, M., Muresan, V., Colceag, J., and Simionescu, N., 1987, Prelesional events in atherogenesis: Changes induced by hypercholesterolemia in the cell surface chemistry of arterial endothelium and blood monocytes in rabbit, J. Submicrosc. Cytol. 19:209–227.PubMedGoogle Scholar
  37. 37.
    Ghitescu, L., Fixman, A., Simionescu, M., and Simionescu, N., 1986, Different mechanisms of serum albumin transcytosis in continuous endothelium of capillaries and large vessels, in: 4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol., p. 131.Google Scholar
  38. 38.
    Goldstein, J. L., Basu, S. K., Brunschede, V. Y., and Brown, M. S., 1976, Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans, Cell 7:85–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Goldstein, J. L., Hoff, H. F., Ho, Y. K., Basu, S. K., and Brown, M. S., 1981, Stimulation of cholesteryl ester synthesis in macrophages by extracts of atherosclerotic human aortas, and complexes of albumin/cholesterol esters, Arteriosclerosis 1:210–226.PubMedCrossRefGoogle Scholar
  40. 40.
    Gordon, J. L., and Pearson, J. D., 1982, Response of endothelial cells to injury, in: Pathobiology of the Endothelial Cell (H.L. Nossel H.J. Vogel, eds.), Academic Press, New York, pp 443–454.Google Scholar
  41. 41.
    Gorog, P., and Born, G. V. R., 1982, Increased uptake of circulating low density lipoproteins and fibrinogen by arterial walls after removal of sialic acids from their endothelial surface, Br. J. Exp. Pathol. 63:447–451.PubMedGoogle Scholar
  42. 42.
    Gorog, P., and Pearson, J. D., 1984, Surface determinants of low density lipoprotein uptake by endothelial cells, Atherosclerosis 53:21–29.PubMedCrossRefGoogle Scholar
  43. 43.
    Grunwald, J., Hesz, A., Ronenek, H., Brucker, J., and Buddecke, E., 1985, Proliferation, morphology and low density lipoprotein metabolism of arterial endothelial cells cultured from normal and diabetic minipigs, Exp. Mol. Pathol. 42:60–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Guyton, J. R., Bocan, T. M. A., and Schifani, T. A., 1985, Quantitative ultrastructural analysis of perifibrous lipid and its association with elastin in non-atherosclerotic human aorta, Arteriosclerosis 5:644–652.PubMedCrossRefGoogle Scholar
  45. 45.
    Hashida, R., Anamizu, C., Kimura, J., Ohkuma, S., Yoshida, Y., and Takano, T., 1986, Transcellular transport of lipoprotein through arterial endothelial cells in monolayer culture, Cell Struct. Funct. 11:31–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Henning, B., Shasby, D. M., and Spector, A. A., 1985, Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers, Circ. Res. 57:776–780.Google Scholar
  47. 47.
    Henriksen, T., Mahoney, E. M., and Steinberg, D., 1982, Interactions of plasma lipoproteins with endothelial cells, Ann. N.Y. Acad. Sci. 401:102–116.PubMedCrossRefGoogle Scholar
  48. 48.
    Hessler, J. R., Morel, D. W., Lewis, L. J., and Chisolm, G. M., 1983, Lipoprotein oxidation and lipoprotein-induced cytotoxicity, Arteriosclerosis 3:215–222.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoff, H. F., and Gaubatz, J. W., 1975, Ultrastructural localization of plasma lipoproteins in human intracranial arteries, Virchows Arch. A 369:111–121.Google Scholar
  50. 50.
    Hoff, H. F., Heideman, C. L., Jackson, R. L., Bayardo, R. J., Kim, H.-S., and Gotto, A. M., Jr., 1975, Localization of patterns of plasma apolipoproteins in human atherosclerotic lesions, Circ. Res. 37:72–79.PubMedGoogle Scholar
  51. 51.
    Hoff, H. F., and Gaubatz, J. W., 1977, Ultrastructural localization of apolipoprotein B in human aortic and coronary atherosclerotic plaques, Exp. Mol. Pathol. 26:214.PubMedCrossRefGoogle Scholar
  52. 52.
    Hoff, H. F., and Gaubatz, J. W., 1982, Isolation, purification, and characterization of a lipoprotein containing apo B from the human aorta, Atherosclerosis 42:273–297.PubMedCrossRefGoogle Scholar
  53. 53.
    Hoff, H. F., and Morton, R. E., 1985,Lipoproteins containing apo B extracted from human aortas: Structure and function, Ann. N.Y. Acad. Sci. 454:183–194.PubMedCrossRefGoogle Scholar
  54. 54.
    Hoff, H. F., Dusek, D. M., and Lynn, M. P., 1986, Spatial distribution and accumulation of low density lipoproteins in the abdominal aorta of swine: Determination by a novel electrotransfer procedure, Lab. Invest. 55:377–386.PubMedGoogle Scholar
  55. 55.
    Hoff, H. F., and Wagner, W. D., 1986, Plasma low density lipoprotein accumulation in aortas of hypercholesterolemic swine correlates with modifications in aortic glycosaminoglycan composition, Atherosclerosis 61:231–236.PubMedCrossRefGoogle Scholar
  56. 56.
    Hsu, M. J., and Juliano, R. L., 1982, Interactions of liposomes with the reticuloendothelial system. II. Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages, Biochim. Biophys. Acta 720:411–419.PubMedCrossRefGoogle Scholar
  57. 57.
    Jackson, R. L., and Gotto, A. M., Jr., 1976, Hypothesis concerning membrane structure, cholesterol and atherosclerosis, Atheroscl. Rev. 1:1–21.Google Scholar
  58. 58.
    Jerome, W. G., and Lewis, J. C., 1984, Early atherogenesis in White Cornean pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation, Am. J. Pathol. 116:56–68PubMedGoogle Scholar
  59. 59.
    Jerome, W. G., and Lewis, J. C., 1985, Early atherogenesis in White Cornean pigeons. II. Ultrastructural and cytochemical observations, Am. J. Pathol. 119:210–222.PubMedGoogle Scholar
  60. 60.
    Joris, J., Zand, T., Nunnary, J. L., Krolikowski, F. J., and Majno, G., 1983, Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats, Am. J. Pathol. 113:341–358.PubMedGoogle Scholar
  61. 61.
    Joris, J., Billingham, M. E., and Majno, G., 1984, Human coronary arteries: An ultrastructural search for the early changes of atherosclerosis, Fed. Proc. 43:710.Google Scholar
  62. 62.
    Kenagy, R., Bierman, E. L., Schwartz, S., and Albers, J. J., 1984, Metabolism of low density lipoprotein by bovine endothelial cells as a function of cell density, Arteriosclerosis 4:365–371.PubMedCrossRefGoogle Scholar
  63. 63.
    Klimov, A. N., Popov, A. V., Nagornev, V. A., and Pleskov, V. M., 1985, Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins, Atherosclerosis 55:217–223.PubMedCrossRefGoogle Scholar
  64. 64.
    Kruth, H. S., 1983, Filipin-positive, Oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding, Lab. Invest. 50:87–93.Google Scholar
  65. 65.
    Kruth, H. S., 1984, Histochemical detection of unesterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin, Atherosclerosis 51:281–292.PubMedCrossRefGoogle Scholar
  66. 66.
    Kruth, H. S., and Fry, D. L., 1984, Histochemical detection and differentiation of free and esterified cholesterol in swine atherosclerosis using filipin, Exp. Mol. Pathol. 40:288–294.PubMedCrossRefGoogle Scholar
  67. 67.
    Kurozumi, T., Imamura, T., Tanaka, K., Yae, Y., and Koga, S., 1984, Permeation and deposition of fibrinogen and low density lipoprotein in the aorta and cerebral artery of rabbit: Immunoelectron microscopic study, Br. J. Exp. Pathol. 65:355–364.PubMedGoogle Scholar
  68. 68.
    Leabu, M., Ghinea, N., Muresan, V., Colceag, J., Hasu, M., and Simionescu, N., 1987, Cell surface chemistry of arterial endothelium and blood monocytes in the normolipidemic rabbit, J. Submicrosc. Cytol. 19:193–208.PubMedGoogle Scholar
  69. 69.
    Lewis, J. C., Taylor, R. G., Jones, N. D., St. Clair, R. W., and Cornhill, J. F., 1982, Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge, Lab. Invest. 46:123–138.PubMedGoogle Scholar
  70. 70.
    Lin, C.-T., Xu, Y., Wu, J.-Y., and Chan, L., 1986, Immunoreaction apolipoprotein E is a widely distributed cellular protein: Immunohistochemical localization of apolipoprotein E in baboon tissues, J. Clin. Invest. 78:947–958.PubMedCrossRefGoogle Scholar
  71. 71.
    Lundberg, B., 1985, Chemical composition and physical state of lipid deposits in atherosclerosis, Atherosclerosis 56:93–110.PubMedCrossRefGoogle Scholar
  72. 72.
    Lupu, F., Danaricu, I., and Simionescu, N., 1986, Endothelial cell-derived foam cells in experimental atherosclerosis: A physical, cytochemical,and ultrastructural study, in: 4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol., p. 124.Google Scholar
  73. 73.
    Lupu, F., Danaricu, I., and Simionescu, N., 1987, The development of intracellular lipid deposits in the lipid-laden cells of the atherosclerotic lesions: A cytochemical and ultrastructural study, Atherosclerosis 67:127–142.PubMedCrossRefGoogle Scholar
  74. 74.
    Mahley, R. W., 1983, Development of accelerated atherosclerosis: Concepts derived from cell biology and animal model studies, Arch. Pathol. Lab. Med. 107:393–399.PubMedGoogle Scholar
  75. 75.
    Mahley, R. W., Innenarity, T. L., Weisgraber, K. H., and Oh, S. Y., 1979, Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective chemical modifications of lysine residues of the apoproteins, J. Clin. Invest. 64:743–750.PubMedCrossRefGoogle Scholar
  76. 76.
    Mahley, R. W., Weisgraber, K. H., Melchior, G. W., Innenarity, T. L., and Hollcombe, K. S., 1980, Inhibition of receptor-mediated clearance of lysine and arginine-modified lipoproteins from the plasma of rats and monkeys, Proc. Natl. Acad. Sci. USA 77:225-229.Google Scholar
  77. 77.
    Mahley, R. W., Innenarity, T. L., Brown, M. S., Ho, Y. K., and Goldstein, J. L., 1980, Cholesteryl ester synthesis in macrophages: Stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species, J. Lipid Res. 21:970–980.PubMedGoogle Scholar
  78. 78.
    Majno, G., Joris, J., and Zand, T., 1985, Atherosclerosis: New horizons, Hum. Pathol. 16:3–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Mazzone, T., Jensen, M., and Chait, A., 1983, Human arterial wall cells secrete factors that are chemotactic for monocytes, Proc. Natl. Acad. Sci. USA 80:5094-5097.Google Scholar
  80. 80.
    Modrak, J. B., and Langner, L. O., 1980, Possible relationship of cholesterol accumulation and collagen synthesis in rabbit aortic tissues, Atherosclerosis 37:211–218.PubMedCrossRefGoogle Scholar
  81. 81.
    Mommaas-Kienhuis, A. M., Krijbolder, L. H., Van Hinsbergh, V. W., Daems, V. T., and Vermeer, B. J., 1985, Visualization of binding and receptor-mediated uptake of low density lipoproteins by human endothelial cells, Eur. J. Cell Biol. 36:201–208.PubMedGoogle Scholar
  82. 82.
    Mora, R., Lupu, F., and Simionescu, N., 1986, Prelesional events in atherogenesis: Colocalization of apoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in lesion-prone areas of aortic intima in hyperlipidemic rabbit, J. Cell Biol. 103(Part 2): 197a (abstract).Google Scholar
  83. 83.
    Mora, R., Eskenazy, M., Hillebrand, A., and Simionescu, N., 1986, Immunocytochemical localization of apolipoprotein B in the aorta during prelesional stages of hyperlipidemia, Acta Biol. Hung. 37(Suppl.):253.Google Scholar
  84. 84.
    Mora, R., Lupu, F., and Simionescu, M., 1987, Prelesional events in atherogenesis: Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit, Atherosclerosis 67:143–154.PubMedCrossRefGoogle Scholar
  85. 85.
    Morel, D. W., Di Corleto, P. E., and Chisohu, G. M., 1984, Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation, Arteriosclerosis 4:357–364.PubMedCrossRefGoogle Scholar
  86. 86.
    Murase, T., Oka, T., Yamada, N., Mori, N., Ishibashi, S., Takaku, F., and Mori, W., 1986, Immunohistochemical localization of apolipoprotein E in atherosclerotic lesions of the aorta and coronary arteries,Atherosclerosis 60:1–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Noma, A., Takabashi, T., and Wada, T., 1981, Elastin-lipid interaction in the arterial wall, Atherosclerosis 38:373–382.PubMedCrossRefGoogle Scholar
  88. 88.
    Navab, M., Hough, G. P., Berliner, J. A., Frank, J. A., Fogelman, A. M., Haberland, M. E., and Edwards, P. A., 1986, Rabbit beta-migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance, J. Clin. Invest. 78:389–397.PubMedCrossRefGoogle Scholar
  89. 89.
    Navab, M., Hough, G. P., Fogelman, A. M., Berliner, J. A., Haberland, M. E., and Edwards, P. A., 1986, Transport of low density lipoprotein across monolayers of human aortic endothelial cells co-cultured with human aortic smooth muscle cells, Arteriosclerosis 6:524a.Google Scholar
  90. 90.
    Nicoll, A., Duffleld, R., and Lewis, B., 1981, Flux of plasma lipoproteins into human arterial intima: Comparison between grossly normal and atheromatous intima, Atherosclerosis 39:229–242.PubMedCrossRefGoogle Scholar
  91. 91.
    Nistor, A., Bulla, A., Filip, D. A., and Radu, A., 1987, The hyperlipidemic hamster as a model of experimental atherosclerosis, Atherosclerosis 68:159–173.PubMedCrossRefGoogle Scholar
  92. 92.
    Quinn, M. T., Parthasarathy, S., and Steinberg, D., 1985, Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:5949-5953.Google Scholar
  93. 93.
    Parthasarathy, S., Steinbrecher, V. P., Barnett, J., Witztum, J. L., and Steinberg, D., 1985, Essential role of phospholipase A activity in endothelial cell-induced modification of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:3000-3004.Google Scholar
  94. 94.
    Pitas, R. E., Innerarity, T. L., and Mahley, R. W., 1983, Foam cells in explants of atherosclerotic rabbit aortas have receptors for beta-very low density lipoproteins and modified low density lipoproteins, Arteriosclerosis 3:2–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Rapp, J. H., Connor, W. E., Lin, D. S., Inahara, T., and Porter, J. M., 1983, Lipids of human atherosclerotic plaques and xanthomas: Clues to the mechanism of plaque progression, J. Lipid Res. 24:1329–1335.PubMedGoogle Scholar
  96. 96.
    Reichel, D., Myant, N. B., Rudra, D. N., and Pflug, J. J., 1980, Evidence for the presence of tissue free cholesterol in low density and high density lipoprotein of human peripheral lymph, Atherosclerosis 37:489–495.CrossRefGoogle Scholar
  97. 97.
    Reidy, M. A., 1985, A reassessment of endothelial injury and arterial lesion formation, Lab. Invest. 53:513–520.PubMedGoogle Scholar
  98. 98.
    Ross, R., 1986, The pathogenesis of atherosclerosis—An update, N. Engl. J. Med. 314:488–500.PubMedCrossRefGoogle Scholar
  99. 99.
    Rudel, L. L., Bond, M. G., and Bullock, B. C., 1985, LDL heterogeneity and atherosclerosisin nonhuman primates,Ann. N.Y. Acad. Sci. 454:248–253.PubMedCrossRefGoogle Scholar
  100. 100.
    Rudel, L. L., Parks, J. S., Johnson, F. L., and Babiak, J., 1986, Low density lipoproteins in atherosclerosis, J. Lipid Res. 27:465–474.PubMedGoogle Scholar
  101. 101.
    Salisbury, B. G., Falcone, D. J., and Minick, C. R., 1985, Insoluble low density lipoproteinproteoglycan complexes enhance cholesteryl ester accumulation in macrophages, Am. J. Pathol. 120:6–11.PubMedGoogle Scholar
  102. 102.
    Sanan, D. A., Strumfer, A. E. M., van der Westhuyzen, D. R., and Coetzee, G. A., 1985, Native and acetylated low density lipoprotein metabolism in proliferating and quiescent bovine endothelial cells in culture, Eur. J. Cell Biol. 36:81–90.PubMedGoogle Scholar
  103. 103.
    Schwendener, R. A., Lagocki, P. A., and Rahman, Y. E., 1984, The effect of charge and size on the interaction of unilamellar liposomes with macrophages, Biochim. Biophys. Acta 772:93–101.PubMedCrossRefGoogle Scholar
  104. 104.
    Schwenke, D. C., and Carew, T. E., 1986, Enhanced LDL content and degradation near the branch orifices of normal rabbit aorta, Arteriosclerosis 6:527a.Google Scholar
  105. 105.
    Schwenke, D. C., and Carew, T. E., 1986, LDL content and rate of LDL degradation near aortic branch orifices increase with cholesterol feeding, Arteriosclerosis 6:554a.Google Scholar
  106. 106.
    Scott, R. F., Kim, D. N., Schmee, J., and Thomas, W. A., 1986, Atherosclerotic lesions in coronary arteries of hyperlipidemic swine. Part 2. Endothelial cell kinetics and leukocyte adherence associated with early lesions, Atherosclerosis 62:1–10.PubMedCrossRefGoogle Scholar
  107. 107.
    Scott, R. F., Reidy, M. A., Kim, D. N., Schmee, J., and Thomas, W. A., 1986, Intimal cell mass-derived atherosclerotic lesions in the abdominal aorta of hyperlipidemic swine. Part 2. Investigation of endothelial cell changes and leukocyte adherence associated with early smooth muscle cell proliferative activity, Atherosclerosis 62:27–38.PubMedCrossRefGoogle Scholar
  108. 108.
    Schwartz, C. J., Sprague, E. A., Kelley, J. L., Valente, A. J., and Suenram, C. A., 1985, Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus), Virchows Arch. A 405:175–191.CrossRefGoogle Scholar
  109. 109.
    Shio, H., Haley, N. J., and Fowler, S., 1979, Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl esters, Lab. Invest. 41:160–167.PubMedGoogle Scholar
  110. 110.
    Simionescu, M., Ghitescu, L., Fixman, A., and Simionescu, N., 1986, Receptor-mediated transcytosis of albumin in vascular endothelium, Acta Biol. Hung. 37(Suppl.):104.Google Scholar
  111. 111.
    Simionescu, M., and Simionescu, N., 1986, Receptor-mediated transcytosis of plasma molecules by vascular endothelium, in:4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol. p. 21.Google Scholar
  112. 112.
    Simionescu, N., and Simionescu, M., 1976,Galloyl-glucose of low molecular weight as mordants in electron microscopy, J. Cell Biol. 70:608–621.PubMedCrossRefGoogle Scholar
  113. 113.
    Simionescu, N., 1983, Cellular aspects of transcapillary exchange, Physiol. Rev. 63:1536–1579.PubMedGoogle Scholar
  114. 114.
    Simionescu, N., and Simionescu, M., 1985, Interactions of endogenous lipoproteins with capillary endothelium in spontaneously hyperlipoproteinemic rats, Microvasc. Res. 30:314–332.PubMedCrossRefGoogle Scholar
  115. 115.
    Simionescu, N., Vasile, E., Lupu, F., Popescu, G., and Simionescu, M., 1985, Accumulation of extracellular liposomes in the arterial intima as early change in experimental hyperlipidemia, J. Cell Biol. 101:113a.Google Scholar
  116. 116.
    Simionescu, N., and Simionescu, M., 1986, Biopathology of arterial intima in the prelesional stages of atherogenesis, in: XVIth Int. Congr. Acad. Pathol., Vienne, Abstr. Vol., p. 4.Google Scholar
  117. 117.
    Simionescu, N., Lupu, F., Vasile, E., Popescu, G., and Simionescu, M., 1986, Early changes of arterial wall in experimental hypercholesterolemia, in: Hleme Congr. Entente Med. Mediterr., Palermo, Abstr. Vol. p. 5.Google Scholar
  118. 118.
    Simionescu, N., and Simionescu, M., 1986, Pathophysiological aspects of vascular endothelium in atherogenesis, Biol. Chem. Hoppe-Seyler 367(Suppl.):104.Google Scholar
  119. 119.
    Simionescu, N., Vasile, E., Lupu, F., Popescu, G., and Simionescu, M., 1986, Prelesional events in atherogenesis: Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit, Am. J. Pathol. 123:109–125.PubMedGoogle Scholar
  120. 120.
    Slater, H. R., Shepherd, J., and Packard, C. J., 1982, Receptor-mediated catabolism and tissue uptake of human low density lipoprotein in the cholesterol-fed atherosclerotic rabbit, Biochim. Biophys. Acta 713:435–445.PubMedGoogle Scholar
  121. 121.
    Small, D. M., and Shipley, G. G., 1974, Physical chemical basis of lipid deposition in atherosclerosis, Science 185:129–177.CrossRefGoogle Scholar
  122. 122.
    Smith, E. B., and Staples, E. M., 1980, Distribution of plasma proteins across the human aortic wall: Barrier functions of endothelium and internal elastic lamina, Atherosclerosis 37:579–590.PubMedCrossRefGoogle Scholar
  123. 123.
    Smith, E. B., and Staples, E. M., 1982, Plasma protein concentrations in interstitial fluid from human aortas, Proc. R. Soc. London B Ser. 217:59–75.CrossRefGoogle Scholar
  124. 124.
    Smith, E. B., and Ashall, C., 1983, Low density lipoprotein concentration in interstitial fluid from human atherosclerotic lesions: Relation to theories of endothelial damage and lipoprotein binding, Biochim. Biophys. Acta 754:249–257.PubMedGoogle Scholar
  125. 125.
    Spector, A. A., Scanu, A. M., Kaduce, T. L., Figard, P. H., Fless, G. M., and Czervionke, R. L., 1985, Effect of human piasma lipoproteins on prostacyclin production by cultured endothelial cells, J. Lipid Res. 26:288–297.PubMedGoogle Scholar
  126. 126.
    Srinivasan, S. R., Jost, C., Radhakrishnamurthy, B., Dalferes, E. R., Jr., and Berenson, G. S., 1981, Lipoprotein-elastin interactions in human aorta fibrous plaque lesions, Atherosclerosis 38:137–147.PubMedCrossRefGoogle Scholar
  127. 127.
    Srinivasan, S. R., Vijayagopal, P., Dalferes, E. R., Jr., Abbate, B., Radhakrishnamurthy, B., and Berenson, G. S., 1984, Dynamics of lipoprotein-glycosaminoglycan interactions in the atherosclerotic rabbit aorta in vivo, Biochim. Biophys. Acta 793:157–168.PubMedGoogle Scholar
  128. 128.
    St. Clair, R. W., Randolph, R. K., Jokinen, M. P., Clarkson, T. B., and Barakat, H. A., 1986, Relationship of plasma lipoproteins and the monocyte-macrophage system to atherosclerosis severity in cholesterol-fed pigeons, Arteriosclerosis 6:614–626.PubMedCrossRefGoogle Scholar
  129. 129.
    Stein, O., Halpern, G., and Stein, Y., 1986, Cholesteryl ester efflux from extracellular and cellular elements of the arterial wall: Model systems in culture with cholesteryl linoleyl ether, Arteriosclerosis 6:70–78.PubMedCrossRefGoogle Scholar
  130. 130.
    Steinberg, D., 1983, Lipoproteins and atherosclerosis: A look back and a look ahead, Arteriosclerosis 3:283–301.PubMedCrossRefGoogle Scholar
  131. 131.
    Steinberg, D., Pittman, R. C., and Carew, T. E., 1985, Mechanisms involved in the uptake and degradation of low density lipoprotein by the artery wall in vivo, Ann. N. Y. Acad. Sci. 454:195–206PubMedCrossRefGoogle Scholar
  132. 132.
    Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D., 1984, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc. Natl. Acad. Sci. USA 81:3883-3887.Google Scholar
  133. 133.
    Stemerman, M. B., 1981, Effect of moderate hypercholesterolemia on rabbit endothelium, Arteriosclerosis 1:25–32.PubMedCrossRefGoogle Scholar
  134. 134.
    Stemerman, M. B., Morrel, E. M., Burke, K. R., Colton, C. K., Smith, K. A., and Lees, R. S., 1986, Local variation in artery wall permeability to low density lipoprotein in normal rabbit aorta, Arteriosclerosis 6:64–69.PubMedCrossRefGoogle Scholar
  135. 135.
    Stender, S., and Zilversmit, D. B., 1981, Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits, Arteriosclerosis 2:115–124.Google Scholar
  136. 136.
    Stender, S., 1982, The in vivo transfer of free and esterifled cholesterol from plasma into the arterial wall of hypercholesterolemic rabbits, Scand. J. Clin. Lab. Invest. 42(Suppl. 161):43–52.Google Scholar
  137. 137.
    Stender, S., and Hjelms, E., 1984, In vivo influx of free and esterified plasma cholesterol into human aortic tissue without atherosclerotic lesions,J. Clin. Invest. 74:1871–1881.PubMedCrossRefGoogle Scholar
  138. 138.
    Taylor, R. G., and Lewis, J. C., 1986, Endothelial cell proliferation and monocyte adhesion to atherosclerotic lesions in White Carnean pigeons, Am. J. Pathol. 125:152–160.PubMedGoogle Scholar
  139. 139.
    Territo, M., Berliner, J. A., and Fogelman, A. M., 1984, Effect of monocyte migration on low density lipoprotein transport across aortic endothelial cell monolayers, J. Clin. Invest. 74:2279–2284.PubMedCrossRefGoogle Scholar
  140. 140.
    Trillo, A. A., and Prichard, R. W., 1979, Early endothelial changes in experimental primate atherosclerosis, Lab. Invest. 41:294.PubMedGoogle Scholar
  141. 141.
    Tsukada, T., Rosenfeld, M., Ross, R., and Gown, A. M., 1986, Immunocytochemical analysis of cellular components in atherosclerotic lesions: Use of monoclonal antibodies with the Watanabe and fat-fed rabbit, Arteriosclerosis 6:601–613.PubMedCrossRefGoogle Scholar
  142. 142.
    Van Hinsbergh, V. W. M., Scheffer, M., Havekes, L., and Kempen, H. J. M., 1986, Role of endothelial cells and their products in the modification of low density lipoproteins, Biochim. Biophys. Acta 878:49–64.PubMedGoogle Scholar
  143. 143.
    Vasile, E., Nistor, A., Nedelcu, S., Simionescu, M., and Simionescu, N., 1980, Dual pathway of low density lipoprotein transport through aortic endothelium and vasa vasorum, in situ,Eur. J. Cell Biol. 22:181.Google Scholar
  144. 144.
    Vasile, E., Simionescu, M., and Simionescu, N., 1983, Visualization of the binding, endocytosis and transcytosis of low density lipoproteins in the arterial endothelium in situ, J. Cell Biol. 96:1677–1689.PubMedCrossRefGoogle Scholar
  145. 145.
    Vasile, E., and Simionescu, N., 1985, Transcytosis of low density lipoprotein through vascular endothelium, in: Glomerular Dysfunction and Biopathology of Vascular Wall (E. Seno, A.L. Copley, M.A. Ventkatachalam, Y. Hamashida, T. Tsujii), Academic Press, New York, pp 87–102.Google Scholar
  146. 146.
    Vasile, E., Popescu, G., Simionescu, M., and Simionescu, N., 1986, Interaction of low density lipoprotein and beta-very low density lipoprotein with the arterial endothelium in normal and hypercholesterolemic animals, in: 4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol., p. 123.Google Scholar
  147. 147.
    Vasile, E., Popescu, G., Simionescu, M., and Simionescu, N., 1986, Enhanced transcytosis and accumulation of beta-very low density lipoproteins in the aorta of rabbits with experimental hyperlipidemia, in: XVIth Int. Congr. Int. Acad. Pathol., Vienna, Abstr. Vol., p. 68.Google Scholar
  148. 148.
    Wagner, W. D., 1985, Proteoglycan structure and function as related to atherosclerosis,Ann. N.Y. Acad. Sci. 454:52–68.PubMedCrossRefGoogle Scholar
  149. 149.
    Wagner, W. D., Salisbury, B. G. J., and Rowe, H. A., 1986, A proposed structure of chondroitin-6-sulfate proteoglycan of human normal and adjacent atherosclerotic plaque, Arteriosclerosis 6:407–414.PubMedCrossRefGoogle Scholar
  150. 150.
    Wallis, W. J., Beatty, P. G., Ochs, H. D., and Harlan, J. M., 1985, Human monocyte adherence to cultured vascular endothelium: Monoclonal antibody-defined mechanisms, J. Immunol. 135:2323–2330.PubMedGoogle Scholar
  151. 151.
    Walton, K. W., and Morris, C. J., 1977, Studies on the passage of plasma proteins across arterial endothelium in relation to atherogenesis, Prog. Biochem. Pharmacol. 14:138–152.Google Scholar
  152. 152.
    Watanabe, T., Hirata, M., Yoshikawa, Y., Nagazuchi, Y., Toyoshima, H., and Watanabe, T., 1985, Role of macrophages in atherosclerosis: Sequential observations of cholesterol-induced rabbit aortic lesions by the immunoperoxidase technique using monoclonal antimacrophage antibody, Lab. Invest. 53:80–90.PubMedGoogle Scholar
  153. 153.
    Weber, G., Fabbrini, P., and Resi, L., 1973, On the presence of a concanavalin A-reactive coat over the endothelial aortic surface and its modifications during early experimental cholesterol atherogenesis in rabbits, Virchows Arch. A 359:299–307.CrossRefGoogle Scholar
  154. 154.
    Weisgraber, K. H., Innenarity, T. L., and Mahley, R. W., 1978, Role of the lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts, J. Biol. Chem. 253:9053–9062.PubMedGoogle Scholar
  155. 155.
    Werb, Z., and Chin, J. R., 1983, Apoprotein E is synthesized and secreted by resident and thioglycolate-elicited macrophages but not by pyran copolymer or bacillus Calmette-Guerinactivated macrophages, J. Exp. Med. 158:1272–1284.PubMedCrossRefGoogle Scholar
  156. 156.
    Wiklund, O., Carew, T. E., and Steinberg, D., 1985, Role of the low density lipoprotein receptor in penetration of low density lipoprotein into rabbit aortic wall, Arteriosclerosis 5:135–141.PubMedCrossRefGoogle Scholar
  157. 157.
    Williams, K. J., Tall, A., and Bisgaier, C., 1986, Phospholipid liposomes acquire apo E in atherogenic plasma and inhibit cholesterol loading of macrophages, Arteriosclerosis 6:538a.Google Scholar
  158. 158.
    Williams, R. D., Sgontas, D. S., and Zaatari, G. S., 1986, Enzymology of long-chain base synthesis by aorta: Induction of serine palmitoyltransferase activity in rabbit aorta during atherogenesis, J. Lipid Res. 27:763770.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Nicolae Simionescu
    • 1
  1. 1.Institute of Cellular Biology and PathologyBucharestRomania

Personalised recommendations