Skip to main content

Lipid—Protein Interactions in the Function of the Na+ and H+ Pumps Role of Sulfatide

  • Chapter
Physical Properties of Biological Membranes and Their Functional Implications
  • 73 Accesses

Abstract

The fluid mosaic model for membrane architecture proposed by Singer and Nicolson states that the integral proteins of membranes are globular amphypathic molecules that are either partially or totally inserted in the lipid bilayer (Singer, 1972). This model continues to have considerable explanatory and predictive value in the analysis of membrane structure and function. The fluid mosaic model depicts the membrane as a two-dimensional solution in which the lipid bilayer acts as a fluid solvent for the globular integral proteins. As a consequence of their mobility in the lipid bilayer, the membrane proteins are able to perform the varied processes of catalysis and transport carried out by biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, R. W., 1976, in: The Enzymes of BiologicaÌ Membranes, (A. Mattinosi, ed.), Vol. Ill, pp. 283–301, Plenum Press, New York.

    Google Scholar 

  • Alvarado, R. H., and Moody, A., 1970, Am. J Physiol 218:1510–1516.

    CAS  Google Scholar 

  • Baker, P. F., 1972, in: Metabolic Pathways (L. E. Hokin, ed.). Vol. VI, pp. 243–268, Academic Press, New York.

    Google Scholar 

  • Bonting, S. L., and Caravaggio, L. L., 1963, Arck Biochem. Biophys. 101:37–46.

    Article  CAS  Google Scholar 

  • Chen, P. S., Toribara, T. Y., and Warner, H. 1956, Anal. Chem. 28:1756–1758.

    Article  CAS  Google Scholar 

  • Dahl, J., and Hokin, L. E., 1974, Ann. Rev. Biochem. 43:327–356.

    Article  PubMed  CAS  Google Scholar 

  • De Pont, J. J. H. M., Van Prooijen-Van Eeden, A., and Bonting, S. L., 1978, Biochim. Biophys. Acta 508:464–477.

    Article  PubMed  Google Scholar 

  • Drapeau, P., and Blastein, R., 1980, J. Biol Chem. 255:7827–7834.

    PubMed  CAS  Google Scholar 

  • Edelman, I. S., 1974, in: Drug and Transport Processes (B. A. Callingham, ed.), pp. 101–110, MacMillan, London.

    Google Scholar 

  • Fleischer, B., and Zambrano, F., 1974, J. Biol Chem. 249:5995–6003.

    PubMed  CAS  Google Scholar 

  • Fleischer, B., Zambrano, F., and Fleischer, S., 1974, J. Supramolecular Structure 2:737–750.

    Article  CAS  Google Scholar 

  • Glynn, Z. M., and Karlish, S. J. D., 1975, Ann. Rev. Phys. 37:13–55.

    Article  CAS  Google Scholar 

  • González, E., and Zambrano, F., 1983, Biochim. Biophys. Acta 728:66–72.

    Google Scholar 

  • González, M., Morales, M., and Zambrano, F., 1979, J. Membrane Biol 51:347–359.

    Article  Google Scholar 

  • Hansson, C. G., Karlsson, K.-A., and Samuelsson, B. E., 1978, J. Biochem. 83:813–819.

    CAS  Google Scholar 

  • Harris, W. E., 1985, Biochemistry 24:2873–2883.

    Article  PubMed  CAS  Google Scholar 

  • Jedlicki, A., and Zambrano, f., 1985, Arch. Biochem. Biophys. 238:558–564.

    Article  PubMed  CAS  Google Scholar 

  • JØrgensen, P. L., 1974, Biochim, Biophys. Acta 356:53–67.

    Google Scholar 

  • JØrgettsen, P. L., 1980, Physiol. Rev. 60:864–908.

    Google Scholar 

  • Karlsson, K.-A., 1976, in: Structure of Biological Membrane (A. Abrahamson and E. Pascher, eds.), pp. 245–274, University of Göteborg.

    Google Scholar 

  • Karlsson, K.-A., Samuelsson, B. E., and Steen, G. O., 1971, J. Membrane Biol. 5:169–184.

    Article  CAS  Google Scholar 

  • Kean, E. L., 1968, J. Lipid. Res. 9:319–327.

    PubMed  CAS  Google Scholar 

  • Kyte, J., 1975, J. Biol. Chem. 250:7443–7449.

    PubMed  CAS  Google Scholar 

  • Lazdunski, M., 1972, in: Current Topics in Cellular Regulation (B. L. Horecker and E. R. Stadtman, eds.), Vol. VI, pp. 267–310, Academic Press, New York.

    Google Scholar 

  • Mehl, E., and Jatzkawitz, H., 1968, Biochim. Biophys. Acta 151:619–627.

    CAS  Google Scholar 

  • Nicolson, G. L., 1976, Biochim. Biophys. Acta 457:57–64.

    CAS  Google Scholar 

  • Nicolson, G. L., and Singer, S. L., 1974, J. Cell Biol 60:236–241.

    Article  PubMed  CAS  Google Scholar 

  • Perrone, J. R., Hackeney, J. F., Dixon, J. F., and Hokin, L. E., 1975, J. Biol Chem. 250:4178–4184.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Sen, A. K., and Rosenthal, A. S., 1965, J. Biol, Chem. 240:1437–1445.

    CAS  Google Scholar 

  • Roloefson, B., and Deenen, L. L. M., 1973, Eur. J. Biochem. 40:245–257.

    Article  Google Scholar 

  • Schuurmans Stekhoven, F., and Bonting, S. L., 1981, Ann. Rev. Physiol 61:1–76.

    CAS  Google Scholar 

  • Sen, R C., and Ray, T. F., 1979, Arch. Biochem. Biophys. 198:548–555.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J., 1976, in: Structure of Biological Membrane (A. Abrahamson and F. Pascher, eds.), pp. 443–461, University of Goteborg, 1976.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, Science 175:720–731.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C., 1957, Biochim. Biophys. Acta 23:394–401.

    CAS  Google Scholar 

  • Skou, J. C., 1975, Quart. Rev. Biophys. 7:401–434.

    Article  Google Scholar 

  • Stein, W. D., Web, W. R., Karlish, S. J. D., and Eilam, Y., 1973, Proc. Natl Acad. Sci. USA. 70:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, K. H., and Lenard, J., 1975, Nature (London) 253:554–557.

    Article  CAS  Google Scholar 

  • Verklaij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D., and Van Deenen, L. m., 1973, Biochim. Biophys. Acta 323:178–182.

    Google Scholar 

  • Walker, J. A., and Wheeler, K. P., 1975, Biochim. Biophys. Acta 394:135–144.

    CAS  Google Scholar 

  • Zambrano, F., and Rojas, M., 1986, Arch. Biochem. Biophys. 253:87–93.

    Article  Google Scholar 

  • Zambrano, F., Fleischer, S., and Fleischer, B., 1975, Biochim. Biophys. Acta 380:357–369.

    CAS  Google Scholar 

  • Zambrano, F., Morales, M., Fuentes, N., and Rojas, M.S 1981, J. Membrane Biol 63:71–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Zambrano, F., Rojas, M. (1988). Lipid—Protein Interactions in the Function of the Na+ and H+ Pumps Role of Sulfatide. In: Hidalgo, C. (eds) Physical Properties of Biological Membranes and Their Functional Implications. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0935-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0935-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8253-2

  • Online ISBN: 978-1-4613-0935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics