Advertisement

Fluorescence Spectroscopy in the Study of Sarcoplasmic Reticulum Calcium-ATPase

  • Sergio Verjovski-Almeida
  • Eleonora Kurtenbach
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

Sarcoplasmic reticulum is an intracellular membrane system that serves as a model for active transport of Ca2+ and coupled enzyme catalysis in biological membranes. The isolation of vesicular fragments of sarcoplasmic reticulum membranes from muscle homogenates and the demonstration that they were capable of maintaining calcium transport at the expense of the hydrolysis of ATP (Ebashi and Lipman, 1962; Hasselbach and Makinose, 1961) has led the way to extensive characterization of the kinetics and mechanism of calcium transport and energy transduction in this system. The work with sarcoplasmic reticulum has been extensively reviewed (de Meis, 1980; Ikemoto, 1982; Inesi, 1985). The sarcoplasmic reticulum membranes have a highly specific protein composition, consisting of a Ca2+- dependent ATPase of 115,000 daltons per polypeptide chain. The ATPase accounts for 80%-90% of the total protein, and its localization within the membrane has been characterized both by X-ray diffraction from oriented multilayers (Dupont et al, 1973; Herbette et al., 1977) and by electron microscopy (Deamer and Baskin, 1969; Hasselbach and Elfvin, 1967).These studies have demonstrated that the ATPase is densely spaced within the plane of the membrane and that the ATPase chain has an amphiphylic character, with a hydrophobic portion inserted into the membrane bilayer and a hydrophylic portion protruding from the cytoplasmic surface of the membrane into the aqueous phase. More recently, the amino acid sequence of the ATPase has been established by MacLennan et al (1985) and a computer-simulated structural model has been proposed from the primary sequence.

Keywords

Sarcoplasmic Reticulum Fluorescence Spectroscopy Fluorescence Lifetime Tryptophan Residue Fluorescence Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, L. M., Vaz, W. L. C., Zachariasse, K. A., and Madeira, V. M. C., 1984, Biochemistry 23:4714–4720.PubMedCrossRefGoogle Scholar
  2. Deamer, D., and Baskin, R. 1969, J. Cell Biol 42:296–307.PubMedCrossRefGoogle Scholar
  3. Dean, W. L., and Tanford, C., 1978, Biochemistry 17:1683–1690.PubMedCrossRefGoogle Scholar
  4. de Meis, L., 1980, Transport and energy transduction in the sarcoplasmic reticulum, in: Membrane Structure and Function (E. Bittar, ed.), Wiley, New York.Google Scholar
  5. Dupont, Y., 1976, Biochem. Biophys. Res. Commun. 71:544–550.Google Scholar
  6. Dupont, Y., Bennett, N., Pougeois, R., and Lacapere, J., 1985a, in: Structure and Function of Sarcoplasmic Reticulum (S. Fleischer and Y. Tonomura, eds.), pp. 225–248, Academic Press, New York.Google Scholar
  7. Dupont, Y., Harrisson, S., and Hasselbach, W, 1973, Nature 244:555–558.CrossRefGoogle Scholar
  8. Dupont, Y., and Leigh, J. B., 1978, Nature 273:396–398.PubMedCrossRefGoogle Scholar
  9. Dupont, Y., Pougeois, R., Ronjat, M., and Verjovski-Almeida, S., 1985b, J. BioL Chem. 260:7241–7249.PubMedGoogle Scholar
  10. Ebashi, S., and Lipman, F., 1962, J. Cell. BioL 14:389–400.PubMedCrossRefGoogle Scholar
  11. Eftink, M. R., and Ghiron, C. A., 1981, Anal Biochem. 114:199–227.PubMedCrossRefGoogle Scholar
  12. Esfahami, M., and Devlin, t. M., 1982, J. Biol Chem. 257:9919–9921.Google Scholar
  13. Guillain, F., Champeil, P., Lacapere, J. J., and Gingold, M. P., 1984, Curr. Top. Ceil ReguL 24:397–407.Google Scholar
  14. Gomez-Fernändez, J. C., Baena, M. D., Teruel, J. A., Vilialain, J., and Vidal, C. J., 1985, X BioL Chem. 260:7168–7170.Google Scholar
  15. Gratton, E., Jameson, D. M., and Hall, R. D., 1984, Ann. Rev. Biophys. Bioeng. 13:105–124.CrossRefGoogle Scholar
  16. Grubmeyer, C., and Penefsky, H. S., 1981, J. Biol Chem. 256:3718–3727.PubMedGoogle Scholar
  17. Hasselbach, W., and Makinose, M., 1961, Biochem. Z. 333:518–528.PubMedGoogle Scholar
  18. Hasselbach, W., and Elfvin, L., 1967, J. Ultrastructure Res. 17:598–622.CrossRefGoogle Scholar
  19. Herbette, L., Marquardt, J., Scarpa, A., and Blasie, J., 1977, Biophys. J. 20:245–272.PubMedCrossRefGoogle Scholar
  20. Heremans, K. A. H., 1982, Ann. Rev. Biophys. Bioeng. 2:1–21.CrossRefGoogle Scholar
  21. Hahn, L-H. E., and Hammes, G. G., 1978, Biochemistry 17:2423–2429.PubMedCrossRefGoogle Scholar
  22. Hiratsuka, T., and Uchida, K., 1973, Biochim. Biophys. Acta 320:635–647.Google Scholar
  23. Hudson, E. N., and Weber, G., 1973, Biochemistry 12:4154–4161.PubMedCrossRefGoogle Scholar
  24. Ikemoto, N., 1982, Ann. Rev. Physiol 44:297–317.CrossRefGoogle Scholar
  25. Inesi, G., 1985, Ann. Rev. Physiol 47:573–601.CrossRefGoogle Scholar
  26. Knopp, J., and Weber, G., 1969, J. Biol Chem. 244:6309–6315.PubMedGoogle Scholar
  27. Kurtenbach, E., and Verjovski-Almeida, S., 1985, J. Biol Chem. 260:9636–9641.PubMedGoogle Scholar
  28. Lacapere, J., Gingold, M., Champeil, P., and Guillain, F., 1981, J. BioL Chem. 256:2302–2306.PubMedGoogle Scholar
  29. Lakowicz, J. R., and Weber, G., 1973, Biochemistry 12:4171–4179.PubMedCrossRefGoogle Scholar
  30. Lehrer, S. S., 1971, Biochemistry 10:3254–3263.PubMedCrossRefGoogle Scholar
  31. Lentz, B. R., 1979, Biophys. J. 25:489–494.PubMedCrossRefGoogle Scholar
  32. London, E., and Feigenson, G., 1981, Biochemistry 20:1939–1948.PubMedCrossRefGoogle Scholar
  33. Lüdi, H., and Hasselbach, W., 1983, Biochem. Biophys. Acta 732:479–482.Google Scholar
  34. Ludi, H., Rauch, B., and Hasselbach, W., 1982, Z. Naturforsch. 37c:299–307.Google Scholar
  35. MacLennan, D. H., Brandl, C. J., Korczak, B., and Green, N. M., 1985, Nature 316:696–700.PubMedCrossRefGoogle Scholar
  36. Moczydlowski, E. G., and Fortes, P. A. G., 1981, J. Biol Chem. 256:2357–2366.PubMedGoogle Scholar
  37. Murphy, A., 1978, J. Biol Chem. 253:385–389.PubMedGoogle Scholar
  38. Paladini, A. A., Jr., and Weber, G., 1981, Biochemistry 20:2587–2593.PubMedCrossRefGoogle Scholar
  39. Perrin, F., 1926, J. Phys. Rad. 1:390.CrossRefGoogle Scholar
  40. Scott, T. L., 1985, J. BioL Chem. 260:14421–14423.PubMedGoogle Scholar
  41. Shinitzky, M., Dianoux, A. C., Gitler, C., and Weber, G., 1971, Biochemistry 10:2106–2113.PubMedCrossRefGoogle Scholar
  42. Shinitzky, M., and Rivnay, B., 1977, Biochemistry 16:982–986.PubMedCrossRefGoogle Scholar
  43. Silva, J. L., and Verjovski-Almeida, S., 1983, Biochemistry 22:707–716.PubMedCrossRefGoogle Scholar
  44. Silva, J. L., and Verjovski-Almeida, S., 1985, J. Biol Chem. 260:4764–4769.PubMedGoogle Scholar
  45. Spencer, R. D., and Weber, G., 1970, J. Chem. Phys. 52:1654–1663.CrossRefGoogle Scholar
  46. Teale, F. W. J., and Weber, G., 1957, Biochem. J. 65:476–482.PubMedGoogle Scholar
  47. Vanderkooi, J. M., Ierokomas, A., Nakamura, H., and Martonosi, A., 1977, Biochemistry 16:1262–1267.PubMedCrossRefGoogle Scholar
  48. Vaz, W. L., Kaufmann, K., and Nicksch, A., 1977, Anal Biochem. 83:385–393.PubMedCrossRefGoogle Scholar
  49. Verjovski-Almeida, S., 1981, J. Biol Chem. 256:2662–2668.PubMedGoogle Scholar
  50. Verjovski-Almeida, S., Kurtenbach, E., Amorim, A. F., and Weber, G., 1986, L Biol Chem. 261:9872–9878.Google Scholar
  51. Verjovski-Almeida, S., Kurzmack, M., and Inesi, G., 1978, Biochemistry 17:5006–5013.PubMedCrossRefGoogle Scholar
  52. Verjovski-Almeida, S., and Silva, j. L., 1981, J. Biol Chem. 256:2940–2944.PubMedGoogle Scholar
  53. Watanabe, T., and Inesi, G., 1982, J. Biol Chem. 251:11510–11516.Google Scholar
  54. Weber, G., 1952, Biochem. J. 51:145–155.PubMedGoogle Scholar
  55. Weber, G., and Teale, F. W. j., 1957, Trans. Faraday Soc. 53:646–655.CrossRefGoogle Scholar
  56. Yamamoto, T., Yantorno, R. E., and Tonomura, Y., 1984, J. Biochem. (Tokyo) 95:1783–1791.Google Scholar
  57. Yantorno, R. E., Yamamoto, T., and Tonomura, Y., 1983, J. Biochem. (Tokyo) 94:1137–1145.Google Scholar
  58. Yguerabide, J., Epstein, H., and Stryer, L., 1970, J. Mol Biol 51:573–590.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Sergio Verjovski-Almeida
    • 1
  • Eleonora Kurtenbach
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Ciencias BiomédicasUniversídade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations