Advertisement

New Pharmacological Perspectives on Nootropic Drugs

  • B. P. H. Poschel

Abstract

Nootropic drugs literally mean drugs that act on the mind. The term nootropic derives from the Greek words noos (mind) and tropein (toward), and was coined in about 1972 by Corneliu Giurgea to categorize the new drug piracetam, the pharmacology of which did not fit any of the known groups of psychotropic drugs (Giurgea, 1982). And while complete agreement between pharmacologists has not yet been attained, the vast majority agree that nootropic drugs have at least the following properties in common. They improve some aspect of cognitive performance—usually learning and/or memory in animals. The improved cognitive performance is most readily (although not necessarily) seen under conditions of disturbed neural metabolism (hypoxia, intoxication, aging, trauma). The agents have very minimal or essentially no side effects even at very high doses. The agents must pass the blood-brain barrier. They have no vasoconstrictive or vasodilative actions. Skondia (1979) has proposed a somewhat longer and more mechanistic set of criteria for defining a nootropic agent. However, his mechanistic requirements make his list more controversial.

Keywords

Firing Rate Cholinergic Neuron Basal Forebrain Therapeutic Window Nucleus Basalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandle, E. F., Wendt, G., Ranalder, U. B., and Trautmann, K. -H., 1984, 2-Pyr-rolidinone and succinimide endogenously present in several mammalian species, Life Sci. 35: 2205–2212.Google Scholar
  2. Banfi, S., Dorigotti, L., Abbracchio, M. P., Balduini, W., Coen, E., Ragusa, C., and Cattabeni, F., 1984a, Methylazoxymethanol microencephaly in rats: Neurochemical characterization and behavioral studies with the nootropic oxiracetam, Pharmacol. Res. Commun. 16: 67–83.PubMedGoogle Scholar
  3. Banfi, S., Fonio, W.. Allievi, E., Pinza, M., and Dorigotti, L., 19846, Cyclic gaba-gabob analogues. IV—Activity on learning and memory. II Farmaco-Ed. Sc. 39: 16–22.Google Scholar
  4. Bartus, R. T., 1979, Physostigmine and recent memory: Effects in young and aged non-human primates, Science 206: 1087–1089.PubMedCrossRefGoogle Scholar
  5. Bartus, R. T., and Johnson, H. R., 1976, Short-term memory in the rhesus monkey: Disruption from the anticholinergic scopolamine, Pharmacol. Biochem. Behav. 5: 39–46.PubMedCrossRefGoogle Scholar
  6. Bartus, R. T., Dean, III, R. L., Sherman, K. A., Friedman, E., and Beer, B., 1981, Profound effect of combining choline and piracetam on memory enhancement and cholinergic function in aged rats, Neurobiol. Aging 2: 3–8.PubMedCrossRefGoogle Scholar
  7. Blusztajn, J. K., and Wurtman, R. J., 1983, Choline and cholinergic neurons, Science 221: 614–620.PubMedCrossRefGoogle Scholar
  8. Blusztajn, J. K., Maire, J-C, Tacconi, M-T., and Wuriman, R. J., 1984, The possible role of neuronal choline metabolism in the pathophysiology of Alzheimer’s disease: A hypothesis, in: Alzheimers Disease: Advances in Basic Research and Therapies ( R. J. Wurtman, S. H. Corkin, and J. H. Growdon, eds.), Proceedings of the Third Meeting of the International Study Group on the Treatment of Memory Disorders Associated with Aging, Zurich, Switzerland, pp. 183–198.Google Scholar
  9. Branconnier, R. J., Cole, J. O., Dessain, E. C, Spera, K. F., Ghazvinian, S., and Devitt, D., 1983, The Therapeutic efficacy of pramiracetam in Alzheimer’s disease: Preliminary observations, Psychopharmacol. Bull. 19: 726–730.Google Scholar
  10. Bunney, B. S., Roth, R. H., and Aghajanian, G. K., 1975, Effects of molindone on central dopaminergic neural activity and metabolism: Similarity to other neuroleptics, Psychopharmacol. Commun. 1: 349–358.PubMedGoogle Scholar
  11. Burešová, O., and Bures, J., 1976, Piracetam-induced facilitation of interhemispheric transfer of visual information in rats, Psychopharmacologia (Berlin) 46: 93–102.CrossRefGoogle Scholar
  12. Callery, P. S., Geelhaar, L. A., and Stogniew, M., 1978, 2-Pyrrolidinone—a cyclization product of γ-aminobutyric acid detected in mouse brain, Biochem, Pharmacol, 27: 2061–2063.Google Scholar
  13. Corkin, S., Davis, K. L., Growdon, J. H., Usdin, E., and Wuriman, R. J., 1982, Alzheimers Disease: A Report of Progress in Research, Raven Press, New York.Google Scholar
  14. Coyle, J. T., Price, D. L., and Delong, M. R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  15. Cumin, R., Bandle, E. F., Gamzu, E., and Haefely, W. E., 1982, Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents, Psychopharmacology 78: 104–111.PubMedCrossRefGoogle Scholar
  16. Das, G. D., 1971, Projections of the interstitial nerve cells surrounding the globus pallidus: a study of retrograde changes following cortical ablations in rabbits, Z. Anat. Entwickl-Gesch. 133: 135–160.CrossRefGoogle Scholar
  17. Das, G. D., and Kreutzberg, G. W., 1968, Evaluation of interstitial nerve cells in the central nervous system: A correlative study using acetylcholinesterase and Golgi techniques, Ergehn. Anat. Entwickl. Gesch. 41: 1–58.Google Scholar
  18. Dell, P., Bon Vallet, M., and Hugelin, A., 1954, Tonus sympathique, adrenaline et controle réticulaire de la motricite spinale, EEG Clin, Neurophysiol. 6: 599–618.CrossRefGoogle Scholar
  19. Dimov, S., Moyanova, S., Nikolov, R., and Nikolova, M., 1984, Piracetam and brain excitability: An electrophysiological study in cats, Meth, Find. Expl. Clin. Pharmacol, 6: 83–89.Google Scholar
  20. Divac, I., 1975, Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates, Brain Res. 93: 385–398.PubMedCrossRefGoogle Scholar
  21. Drachman, D. A., 1977, Memory and cognitive function in man: Does the cholinergic system have a specific role?, Neurology 27: 783–790.PubMedGoogle Scholar
  22. Drachman, D. A., and Leaviit, J., 1974, Human memory and the cholinergic system: A relationship to aging?, Arch. Neurol, 30: 113–121.PubMedGoogle Scholar
  23. Ferris, S. H., 1981, Empirical studies in senile dementia with central nervous system stimulants and metabolic enhancers, in: Strategies for the Development of an Effective Treatment for Senile Dementia ( T. Crook and S. Gershon eds.), Mark Powley Assoc., New Canaan, CT, pp. 173–187.Google Scholar
  24. Ferris, S. H., Reisberg, B., Friedman, E., Schneck, M. K., Sherman, K. A., Mir, P., and Barius, R. T., 1982, Combination choline/piracetam treatment of senile dementia, Psychopharmacol. Bull. 18: 94–98.Google Scholar
  25. Fibiger, H. C, 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev. 4: 327–388.CrossRefGoogle Scholar
  26. Flicker, C, Dean, R. I., Watkins, D. L., Fisher, S. K., and Bartus, R. T., 1983, Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat, Pharmacol. Biochem. Behav. 18: 973–981.PubMedCrossRefGoogle Scholar
  27. Gamzu, E., 1985, Animal behavioral models in the discovery of compounds to treat memory dysfunction, Ann. NY Acad. Sci. 444: 370–393.PubMedCrossRefGoogle Scholar
  28. Giurgea, C., 1976, Piracetam: Nootropic pharmacology in neurointegrative activity, in: Current Developments in Psychopharmacology, Vol. 3 ( W. B. Essmann and L. Valvelli, eds.), Spectrum, New York, pp. 223–273.Google Scholar
  29. Giurgea, C. E., 1982, The nootropic concept and its prospective implications, Drug Dev. Res. 2: 441–446.CrossRefGoogle Scholar
  30. Giurgea, C., and Salama, M., 1977, Nootropic drugs, Prog. Neuro-Psychopharmacol. 1: 235–247.CrossRefGoogle Scholar
  31. Growdon, J. H., Corkin, S., and Huff, F. J., 1984, Alzheimer’s disease: Treatment with nootropic drugs, in: Alzheimer’s Disease: Advances in Basic Research and Therapies ( R. J. Wurtman, S. H. Corkin, and J. H. Growdon, eds.), Proceedings of the Third Meeting of the International Study Group on the Treatment of Memory Disorders Associated with Aging, Zurich, Switzerland, pp. 375–389.Google Scholar
  32. Hedreen, J. C, Struble, R. G., Whitehouse, P. J., and Price, D. L., 1984, Topography of the magnocellular basal forebrain system in human brain, J. Neuropathol. Exp. Neurol. 43: 1–21.PubMedCrossRefGoogle Scholar
  33. Hershenson, F. M., and Marriott, J. G., 1984, Cognitive disorders, Ann. Rep. Med. Chem. 19: 31–40.CrossRefGoogle Scholar
  34. Hughes, J. R., and Cayaffa, J. J., 1977, The EEG in patients at different ages without organic cerebral disease, Electroenceph. Clin. Neurophysiol. 42: 776–784.CrossRefGoogle Scholar
  35. Itil, T. M., Menon, G. N., Bozak, M., and Songar, A., 1982, The effects of oxiracetam (ISF 2522) in patients with organic brain syndrome (a double-blind controlled study with piracetam), Drug Dev. Res. 2: 447–461.CrossRefGoogle Scholar
  36. Jaspar, H. H., 1949, Diffuse projection systems: The integrative action of the thalamic reticular system, EEG Clin. Neurophysiol. 1: 405–419.Google Scholar
  37. Johnston, M. V., Mckinney, M., and Coyle, J. T., 1979, Evidence for a cholinergic projection to neocortex from neurons in basal forebrain, Proc. Natl. Acad. Sci. USA 76: 5392–5396.PubMedCrossRefGoogle Scholar
  38. Kabes, J., Erban, L., Hanzlicek, L., and Skondia, V., 1979, Biological correlates of piracetam clinical effects in psychotic patients, J. Int. Med. Res. 7: 277–284.PubMedGoogle Scholar
  39. Kievit, J., and Kuypers, H. G., 1975, Basal forebrain and hypothalamic connections in frontal and parietal cortex in the rhesus monkey, Science 187: 660–662.PubMedCrossRefGoogle Scholar
  40. Kramis, R. C, Vanderwolf, C. H., and Bland, B. H., 1975, Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behaviour and effects of atropine, diethylether urethane and pentobarbital, Exp. Neurol. 49: 58–85.PubMedCrossRefGoogle Scholar
  41. Lindsley, D. B., 1952, Psychological phenomena and the electroencephalogram, EEG Clin. Neurophysiol. 4: 443–456.CrossRefGoogle Scholar
  42. Magoun, H. W., 1950, Caudal and cephalic influences of the brain stem reticular formation, Physiol. Rev. 30: 459–474.PubMedGoogle Scholar
  43. Magoun, H. W., 1958, The Waking Brain, Charles C Thomas, Springfield, IL.Google Scholar
  44. MatéJcek, M., and Devos J. E., 1976, Selected methods of quantitative EEG analysis and their applications in psychotropic drug research, in: Quantitative Analytic Studies in Epilepsy ( P. Kellaway and I. Petersen, eds.), Raven Press, New York, pp. 183–205.Google Scholar
  45. Mcgeer, P. L., 1984, The 12th J.A.F. Stevenson Memorial lecture. Aging, Alzheimer’s disease, and the cholinergic system, Can. J. Physiol. Pharmacol. 62: 741–754.PubMedCrossRefGoogle Scholar
  46. Mcgeer, P. L., Mcgeer, E. G., and Suzuki, J., 1977, Aging and extrapyramidal function, Arch. Neurol. (Chicago) 34: 33–35.Google Scholar
  47. Mcgeer, P. L., Mcgeer, E. G., Suzuki, J., Dolman, C. E., and Nagai, T., 1984, Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain, Neurology 34: 741–745.PubMedGoogle Scholar
  48. Mitchell, S. J., Rawlins, J. N., Steward, O., and Olton, D. S., 1982, Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats, J. Neurosci. 2: 292–302.PubMedGoogle Scholar
  49. Mori, A., Katayama, Y., Matsumoto, M., and Takeuchi, H., 1975, Detection of α-pyrrolidinone in bovine brain, IRCS Med. Sci. 3: 590.Google Scholar
  50. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O’Keefe, J., 1982, Place navigation impaired in rats with hippocampal lesions, Nature 297: 681–683.PubMedCrossRefGoogle Scholar
  51. Nagai, T., Mcgeer, P. L., Peng, J. H., Mcgeer, E. G., and Dolman, C. E., 1983, Choline acetyltransferase immunohistochemistry in brains of Alzheimer’s disease patients and controls, Neurosci. Lett. 36: 195–199.PubMedCrossRefGoogle Scholar
  52. Nickolson, V. J. and Wolthuis, O. L., 1976, Effect of the acquisition-enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine, Biochem. Pharmacol. 25: 2241–2244.PubMedCrossRefGoogle Scholar
  53. Obrist, W. D., 1979, Electroencephalographic changes in normal aging and dementia, in: Brain Function in Old Age ( F. Hoffmeister and C. Müller, eds.), Springer-Verlag, Berlin, pp. 102–111.Google Scholar
  54. O’Keefe, J., and Nadel, L., 1978, The Hippocampus as a Cognitive Map, Oxford University Press, Oxford.Google Scholar
  55. Olton, D. S., Walker, J. A., and Gage, F. H., 1978, Hippocampal connections and spatial discrimination, Brain Res. 139: 295–308.PubMedCrossRefGoogle Scholar
  56. Ostrowski, J., and Keil, M., 1978, Autoradiographic studies of the distribution of 14C-piracetam in monkey brain, Arzneim-Forsch. 28: 29–35.Google Scholar
  57. Parducz, A., 1984, Depletion of synaptic vesicle lipids in stimulated cholinergic nerve terminals, in: Alzheimers Disease: Advances in Basic Research and Therapies ( R. J. Wurtman, S. H. Corkin, and J. H. Growdon, eds.), Proceedings of the Third Meeting of the International Study Group on the Treatment of Memory Disorders Associated with Aging, Zurich, Switzerland, pp. 217–226.Google Scholar
  58. Petsche, H., Stumpf, GIL, and Gogolak, G., 1962, The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells, Electroenceph. Clin. Neurophysiol. 14: 202–211.PubMedCrossRefGoogle Scholar
  59. Petsche, H., Gogolak, G., and Van Zwieten, P. A., 1965, Rhythmicity of septal cell discharges at various levels of reticular excitation, Electroenceph. Clin. Neurophysiol. 19: 25–33.PubMedCrossRefGoogle Scholar
  60. Piracetam, Basic Scientific and Clinical Data, UCB Pharmaceutical Division, Brussels, Belgium.Google Scholar
  61. Platel, A., Jalfre, M., Pawelec, C, Roux, S., and Porsoli, R. D., 1984, Habituation of exploratory activity in mice: Effects of combinations of piracetam and choline on memory processes, Pharmacol, Biochem, Behav. 21: 209–212.CrossRefGoogle Scholar
  62. Poschel, B. P. H., 1977, The hippocampally-stimulated rat as a model for Korsakoff-type amnesias, Lab. Animal Sci. 27: 738–747.Google Scholar
  63. Poschel, B. P. H., and Ninteman F. W., 1978, Model for Korsakoff-type amnesias: Negative effects from the amygdala and mamillary body, Psychol. Rep. 43: 767–770.PubMedCrossRefGoogle Scholar
  64. Poschel, B. P. H., Marriott, J. G., and Gluckman, M. I., 1982, Pharmacology underlying the cognition activating properties of pramiracetam (CI-879), Abstr. Am. Coll. Neuropsycho-pharmacol, 95.Google Scholar
  65. Poschel, B. P. H., Ho, P. M., Callahan, M., and Ninteman, F. W., 1983a, The Therapeutic window of the cognition activator pramiracetam shown behaviorally, in the EEG, and in single neuron firing rate, Abstr. Am. Coll. Neuropsychopharmacol. 93.Google Scholar
  66. Poschel, B. P. H., Marriott, J. G., and Gluckman, M. I., 1983b, Pharmacology of the cognition activator pramiracetam (CI-879), Drugs Exp. Clin. Res. 9(12):853–87l.Google Scholar
  67. Poscheu, B. P. H., Ho, P. M., and Ninteman, F. W., 1985a, Arousal deficit shown in aged rat’s quantitative EEG and ameliorative action of pramiracetam compared to piracetam, Experientia 41: 1433–1435.PubMedCrossRefGoogle Scholar
  68. Poschel, B. P. H., Ho, P. M., Ninteman, F. W., and Callahan, M. J., 1985b, Pharmacologic therapeutic window of pramiracetam demonstrated in behavior, EEG, and single neuron firing rates, Experientia 41: 1153–1156.PubMedCrossRefGoogle Scholar
  69. Poschel, B. P. H., Ho, P. M., Callahan, M. J., and Ninteman, F. W., 1987, Growing familiarity with the test situation augments the vigilance deficit of aged rats, Electroenceph. Clin. Neurophysiol. 66: 196–199.PubMedCrossRefGoogle Scholar
  70. Price, D. L., Whitehouse, P. J., Struble, R. G., Clark, A. W., Coyle, J. T., Delong, M. D., and Hedreen, J. C, 1982, Basal forebrain cholinergic systems in Alzheimer’s disease and related dementias, Neurosci. Commen. 1: 84–92.Google Scholar
  71. Pugsley, T. A., Poschel, B. P. H., Downs, D. A., Shih, Y-H., and Gluckman, M. I., 1983a, Some pharmacological and neurochemical properties of a new cognition activator agent, pramiracetam (CI-879), Psychopharmacol. Bull. 19: 721–726.Google Scholar
  72. Pugsley, T. A., Shih, Y-H., Coughenour, L., and Stewart, S. F., 19836, Some neurochemical properties of pramiracetam (CI-879), a new cognition-enhancing agent, Drug Dev. Res. 3: 407–420.CrossRefGoogle Scholar
  73. Reisberg, B., Ferris, S. H., Schneck, M. K., Corwin, J., Mir, P., Friedman, E., Sherman, K. A., Mccarthy, M., and Bartus, R. T., 1982, Piracetam in the treatment of cognitive impairment in the elderly, Drug Dev. Res. 2: 475–480.CrossRefGoogle Scholar
  74. Rolls, E. T., Sanghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey, Brain Res. 164: 121–135.PubMedCrossRefGoogle Scholar
  75. Rossor, M. N., Svendsen, C, Hunt, S. P., Mountjoy, C. Q., Roth, M., and Iversen, L. L., 1982, The substantia innominata in Alzheimer’s disease: A histological and biochemical study of cholinergic marker system, Neurosci. Lett. 28:217-222.PubMedCrossRefGoogle Scholar
  76. Rothballer, A. B., 1956, Studies on the adrenaline-sensitive component of the reticular activating system, EEG Clin. Neurophysiol. 8: 603–621.CrossRefGoogle Scholar
  77. Saletu, B., GrüNberger, J., and Linzmayer, L., 1980, Quantitative EEG and psychometric analyses in assessing CNS-activity of Ro 13-5057—A cerebral insufficiency improver, Meth. Find. Exp. Clin. Pharmacol. 2: 269–285.Google Scholar
  78. Sara, S. J., 1980, Memory retrieval deficits: Alleviation by etiracetam, a nootropic drug, Psychopharmacology 68:235–241.PubMedCrossRefGoogle Scholar
  79. Sara, S. J., and Lefevre, D., 1972, Hypoxia-induced amnesia in one-trial learning and pharmacological protection by piracetam, Psychopharmacologia (Berlin) 25: 32–40.CrossRefGoogle Scholar
  80. Skondia, V., 1979, Criteria for clinical development and classification of nootropic drugs, Clin. Ther. 2: 316–332.Google Scholar
  81. Surwillo, W. W., 1968, Timing of behavior in senescence and the role of the central nervous system, in: Human Aging and Behavior ( G. A. Talland, ed.), Academic Press, New York, pp. 1–35.Google Scholar
  82. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta. Physiol. Scand. 367 (Suppl.):l–48.Google Scholar
  83. Valzelli, L., Bernasconi, S., and Sala, A., 1980, Piracetam activity may differ according to the age of the recipient mouse, Int. Pharmacopsychiatry 15: 150–156.PubMedGoogle Scholar
  84. Vanderwolf, C. H., 1975, Neocortical and hippocampal activation in relation to behaviour: Effects of atropine, eserine, phenothiazines and amphetamine, J Comp. Physiol. Psychol. 88: 300–323.PubMedCrossRefGoogle Scholar
  85. Vanderwolf, C. H., Kramis, R., Gillespie, L. A., and Bland, B. H., 1975, Hippocampal slow activity and neocortical low voltage fast activity: Relations to behaviour, in: The Hippocampus, Vol. 2 ( R. L. Isaacson and K. Pribram, eds.), Plenum Press, New York, pp. 101–128.Google Scholar
  86. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and Delong, M. R., 1981, Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleusbasalis, Ann. Neurol. 10: 122–126.PubMedCrossRefGoogle Scholar
  87. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and Delong, M. R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239.PubMedCrossRefGoogle Scholar
  88. Wikler, A., 1952, Pharmacologic dissociation of behavior and EEG “sleep patterns” in dogs, Proc. Soc. Exp. Biol. Med. 79: 261–265.PubMedGoogle Scholar
  89. Wolthuis, O. L., 1981, Behavioural effects of etiracetam in rats, Pharmacol. Biochem. Behav. 15: 247–255.PubMedCrossRefGoogle Scholar
  90. Wurtman, R. J., 1985, Alzheimer’s disease, Sci. Am. 252: 62–74.PubMedCrossRefGoogle Scholar
  91. Wurtman, R. J., Magil, S. G., and Reinstein, D. K., 1981, Piracetam diminishes hippocampal acetylcholine levels in rats, Life Sci. 28: 1091–1093.PubMedCrossRefGoogle Scholar
  92. Young, R. M., and Chang, T., 1984, Research Report Memo No. 764 - 00281, Warner-Lam-bert/Parke-Davis Pharmaceutical Research, Ann Arbor, MI, unpublished data.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • B. P. H. Poschel
    • 1
  1. 1.Department of PharmacologyWarner-Lambert/Parke-Davis Pharmaceutical ResearchAnn ArborUSA

Personalised recommendations