Skip to main content
  • 49 Accesses

Abstract

We have demonstrated that serotonin antagonists preserve neurological function in two different animal models. In one model, reversible occlusion was studied; in the other, irreversible ischemia was produced. In both instances, the protective effects were unequivocal. Alterations of the tissue concentrations of serotonin and its primary metabolite were not demonstrated during the stages of ischemia when irreversible damage was occurring. Thus, a new approach to the understanding of the mechanisms of action of serotonin is required. Although the mechanisms of injury reduction are not yet known, these findings make a compelling case for the utility of serotonin antagonists in the emergency therapy of such problems as cardiac arrest to prevent cerebral damage while the cardiac status is stabilized, and possibly for stroke-in-evolution to prevent continued progressive extension of damage. It may also be possible to give such therapy prophylactically in high-risk situations such as increasingly frequent transient ischemic attacks or before high-risk surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, R. M., Carlson, A., Ljunggren, B., Siesjo, B. K., and Snider, S. R., 1974, Effect of ischemia on monoamine metabolism in the brain, Acta Physiol. Scand. 90: 789–791.

    Article  Google Scholar 

  • Calderini, G., Carlsson, A., and Norstrom, C. H., 1978, Influence of transient ischemia in monoamine metaoblism in the rat brain during nitrous oxide and phenobarbitone anesthesia, Brain Res. 157: 303–310.

    Article  Google Scholar 

  • Crowell, R. M., Marcoux, F. W., and DeGirolami, U., 1981, Variability in reversibility of focal cerebral ischemia in unanesthetized monkeys, Neurology (N.Y.) 31: 1295–1302.

    Google Scholar 

  • Cvejie, V., Micic, D. V., Djuricic, B. M., Mrsulja, B. J., and, Mrsulja, B. B., 1980, Mono-amines and related enzymes in cerebral cortex and basal ganglia following transient ischemia in gerbils, Acta Neuropathol. 51: 71–77.

    Article  Google Scholar 

  • Gaudet, R., Welch, K. M. A., Chabi, E., and Wang, T.- P., 1978, Effect of transient ischemia on monoamine levels in the cerebral cortex of gerbils, Neurochemistry 30: 751–757.

    Article  Google Scholar 

  • Ginsberg, M. D., Reivich, M., Giandomenico, A., and Greenberg, J. H., 1977, Local glucose utilization in acute focal cerebral ischemia: Local dysmetabolism and diaschisis, Neurology (Minneap.) 27: 1042–1048.

    Google Scholar 

  • Harik, S. I., Yoshida, S., Busto, R., and Ginsberg, M. D., 1986, Monoamine neurotransmitters in diffuse reversible forebrain ischemia and early recirculation: Increased dopaminergic activity, Neurology (N.Y.) 36: 971–977.

    Google Scholar 

  • Harrison, M. J. G., and Ellam, L. D., 1981, Role of 5HT in the morbidity of cerebral infarc-tion—a study in the gerbil stroke model, J. Neurol. Neurosurg. Psychiatry 44: 140–143.

    Article  Google Scholar 

  • Harrison, M. J. G., Marsden, C. D., and Jenner, P., 1979, Effect of experimental ischemia on neurotransmitter amines in the gerbil brain, Stroke 10: 165–168.

    Article  Google Scholar 

  • Hossmann, K. A., Hossmann, V., and Takagi, S., 1978, Microsphere analysis of local cerebral and extracerebral blood flow after complete ischemia of cat brain for one hour, J. Neurol. 218: 275–285.

    Article  Google Scholar 

  • Isbell, H., Miner, E. J., and Logan, C. R., 1959, Cross tolerance between D-2-brom-lysergic acid diethylamide (BOL 148) and the D-diethylamide of lysergic acid (LSD-25), Psychophar- macologia 1: 109–116.

    Article  Google Scholar 

  • Ishihara, N., Welch, K. M. A., Meyer, J. S., Chabi, E., Nartomi, H., Wang, T.- P., Nell, J. H., Hsu, M.- C., and Miyakawa, Y., 1979, Influence of cerebral embolism on brain mono¬amines, J. Neurol. Neurosurg. Psychiatry 42: 847–853.

    Article  Google Scholar 

  • Kogure, K., Busto, R., Scheinberg, P., and Reinmuth, O. M., 1974, Energy metabolites and water content in rat brain during the early stage of development of cerebral infarction, Brain 97: 103–114.

    Article  Google Scholar 

  • Kogure, K., Scheinberg, P., Matsumoto, A., Busto, R., and Reinmuth, O. M., 1975, Cate-cholamines in experimental brain ischemia, Arch. Neurol. 32: 21–24.

    Google Scholar 

  • Lust, D. W., Mrsulja, B. B., Mrsulja, B. J., Passonneau, J. V., and Klatzo, I., 1975, Putative neurotransmitters and cyclic nucleotides in prolonged ischemia of the cerebral cortex, Brain Res. 98: 394–399.

    Article  Google Scholar 

  • Marcus, M. L., Heistad, D. D., Ehrhardt, J. C., and Abboud, F. M., 1976, Total and regional cerebral blood flow measurement with 7-, 10-, 15-, 25-, and 50-[xm microspheres, J. Appl. Physiol. 40: 501–507.

    Google Scholar 

  • Matsumoto, M., Kimura, K., Fujisawa, A., and Matsuyama, T., 1984, Differential effect of cerebral ischemia on monoamine content of discrete brain regions of the Mongolian gerbil (Meriones unguiculatus), J. Neurochem. 42 (3): 647–651.

    Article  Google Scholar 

  • Molinari, G. F., and Laurent, J. P., 1976, A classification of experimental models of brain ischemia, Stroke 7: 14–17.

    Article  Google Scholar 

  • Moossy, J., 1979, Morphological validation of ischemic stroke models, in: Cerebrovascular Diseases (R. T. Price and E. Nelson, eds.), 11th Princeton Conference, Raven Press, New York, pp. 3–10.

    Google Scholar 

  • Mrsulja, B. B., Mrsulja, B. J., Spatz, M., and Klatzo, I., 1976, Brain serotonin after experi-mental vascular occlusion, Neurology (Minneap.) 26: 785–787.

    Google Scholar 

  • Schmidt, C. F., 1960, Central nervous system circulation fluids and barriers, in: Handbook of Physiology, Volume 3 ( J. Field, H. W. Magoun, and V. E. Hall, eds.), American Physiological Society, Washington, pp. 1745–1750.

    Google Scholar 

  • Siegel, B.,A., Meidinger, R., Elliott, A. J., Studer, R., Curtis, C., Morgan, J., and Potchen, E. J., 1972, Experimental cerebral microembolism—multiple tracer assessment of brain edema, Arch. Neurol. 26: 73–77.

    Google Scholar 

  • Vise, W. M., Schuier, F., Hossmann, K.- A., Takagi, S., and Zulch, K. J., 1977, Cerebral microembolization. I. Pathophysiological studies, Arch. Neurol. 34: 660.

    Google Scholar 

  • Waltz, A. G., 1979, Comparative pathophysiology of ischemic stroke models: An evaluation, in: Cerebrovascular Diseases (R. T. Price and E. Nelson, eds.), 11th Princeton Conference, Raven Press, New York, pp. 11–17.

    Google Scholar 

  • Waud, D. R., 1972, On biological assays involving quantal responses, J. Pharmacol. Exp. Ther. 183: 577–607.

    Google Scholar 

  • Welch, K. M. A., Wang, T. P. F., and Chabi, E., 1978, Ischemia-induced seizures and cortical monoamine levels, Ann. Neurol. 3: 152–155.

    Article  Google Scholar 

  • Yatsu, F. M., 1976, Biochemical mechanisms of ischemic brain infarction, in: Handbook of Clinical Neurology, Volume 27 ( P. J. Vinken and G. W. Bruyn, eds.), American Elsevier, New York, pp. 27–37.

    Google Scholar 

  • Zivin, J. A., 1985, Cyproheptadine reduces or prevents ischemic central nervous system damage, Neurology (N.Y.) 35: 584–587.

    Google Scholar 

  • Zivin, J. A., and DeGirolami, U., 1986, Studies of the influence of biogenic amines on central nervous system ischemia, Stroke 17: 509–514.

    Article  Google Scholar 

  • Zivin, J. A., DeGirolami, U., and Hurwitz, E. L., 1982, Spectrum of neurological deficits in experimental CNS ischemia, Arch. Neurol. 39: 408–412.

    Google Scholar 

  • Zivin, J. A., and Stashak, J., 1983, The effect of ischemia on biogenic amine concentrations in the central nervous system, Stroke 14: 556–562.

    Article  Google Scholar 

  • Zivin, J. A., and Venditto, J. A., 1984, Experimental CNS ischemia: Serotonin antagonists reduce or prevent damage, Neurology (N.Y.) 34: 469–474.

    Google Scholar 

  • Zivin, J. A., and Waud, D. R., 1983, A precise and sensitive method for measurement of spinal cord blood flow, Brain Res. 258: 197–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press

About this chapter

Cite this chapter

Zivin, J.A. (1988). Serotonin Antagonists Reduce Central Nervous System Ischemic Damage. In: Stein, D.G., Sabel, B.A. (eds) Pharmacological Approaches to the Treatment of Brain and Spinal Cord Injury. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0927-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0927-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8249-5

  • Online ISBN: 978-1-4613-0927-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics