Skip to main content

Abstract

In response to damage, the adult CNS exhibits capabilities, such as glial cell proliferation and differentiation and axonal sprouting and growth, typical of the developmental period. This “rejuvenation” of the CNS tissue arises as a consequence of the injury-induced increase in the activities of neurotrophic and sprouting factors and of glia, fibroblast, and endothelial cell mitogens and morphogens.

In the absence of neuronal division, true regeneration of the CNS is not possible. However, the knowledge of the biochemical events underlying the cellular response of the CNS to injury offers a way to intervene in the process and attempt functional repair.

Studies on the time course of induction of various growth activities after a lesion reveal that, contrary to what is observed during development, the process of injury repair does not follow a well-ordered temporal sequence. The increase in neurotrophic activity occurs simultaneously with that of axon-sprouting factors and at a time subsequent to most secondary neuronal death. The enhancement in the activity of nonneuronal mitognes (and the consequent proliferation of glial, fibroblast, and endothelial cells) precedes that of axon-sprouting factors. By giving priority to cell proliferation, the organism ensures the restitution of blood supply as well as that of the glia limitans and other CNS-body boundaries. But it compromises the regeneration of axons across the injury area.

This information, accumulated for the most part during the last 5 years, allows us to visualize various ways of intervention after CNS injury. One of the most obvious would be to supply purified neurotrophic factors to the affected area and thus save many neurons from secondary death. Another type of intervention that many of us have in mind is the replacement of lost neurons and their connections by means of transplants. Transplantation of donors CNS tissue at a time when production of neurotrophic and sprouting factors by the injured host is maximal would ensure optimal survival and integration of the donor neurons. Finally, the exogenous supply of purified neurite-sprouting and elongation factors, together wiht that of glial mitogen inhibitors (naturally present in the CNS), may facilitate the regeneration of interrupted pathways.

The purification and use of central growth factors and their inhibitors should eventually permit convergent multiple interventions to repair damaged CNS tissue. Correct timing and intertwining of the requirements of repair with the priorities of the organism seem esential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot, N. J., 1985. Are glial cells excitable after all? Trends Neurosci. 8: 141–142.

    Article  Google Scholar 

  • Adrian, E. K., 1963, Cell division in injured spinal cord, Am. J. Anat. 123: 501–520.

    Article  Google Scholar 

  • Adrian, E. K., and Williams, M. G., 1973, Cell proliferation in injured spinal cord. An electron microscopic study, J. Comp. Neurol. 151: 1–24.

    Article  Google Scholar 

  • Aguayo, A., 1985, Axonal regeneration from injured neurons in the adult mammalian nervous system. In: Synaptic Plasticity (C. W. Cotman, ed.), The Guilford Press, New York, pp. 457–484.

    Google Scholar 

  • Aguayo, A., Vidal-Sanz, M., and Bray, G. M., 1986, PNS transplants into the CNS: A tool for the study of axonal regeneration and connectivity in the mammalian brain. Proceedings of the Symposium on Neural Grafts, UCLA, Los Angeles, pp. 33–34.

    Google Scholar 

  • Azmitia, E. C., Perlow, M. J., Brennan, M. J., and Lauder, J. M., 1981, Fetal raphe and hippocampal transplants into adult and aged C57 BL/6N mice: A preliminary immu- nocytochemical study, Brain Res. Bull. 7: 703–710.

    Google Scholar 

  • Azmitia, E. C., and Whittaker, P. M., 1983, Formation of a glial scar following microinjection of fetal neurons into the hippocampus or midbrain of adult rat: An immunocytocchemical study, Neurosci. Lett. 38: 145–150.

    Google Scholar 

  • Balentine, J. D., 1978, Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin, Lab. Invest. 39: 254–266.

    Google Scholar 

  • Banker, G. A., 1980, Trophic interactions between astroglial cells and hippocampal neurons in culture, Science 209: 809–810.

    Article  Google Scholar 

  • Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320: 172–176.

    Article  Google Scholar 

  • Beneviste, H., Drejer, J., Schousboe, A., and Diemer, N. H., 1984, Elevation of the extra-cellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem. 43: 1369–1374.

    Article  Google Scholar 

  • Bernstein, J. J., and Bernstein, M. E., 1971, Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord, Exp. Neurol. 19:25–32.

    Google Scholar 

  • Bjorklund, A., Segal, M., and Stenevi, U., 1979, Functional reinnervation of rat hippocampus by locus coeruleus implants Brain Res. 170: 409–426.

    Google Scholar 

  • Bjorklund, A., and Stenevi, U., 1977, Reformation of the severed septohippocampal cho-linergic pathway in the adult rat by transplanted septal neurons, Cell Tissue Res. 185: 289–302.

    Google Scholar 

  • Bjorklund, A., Stenevi, U., and Svengaard, N.-A., 1976, Growth of transplanted mono- aminergic neurons into the adult hippocampus along the perforant path, Nature 262: 787–790.

    Article  Google Scholar 

  • Bowman, C. L., and Kimelberg, H. K., 1984, Excitatory amino acids directly depolarize rat brain astrocytes in primary culture, Nature 311: 656–659.

    Article  Google Scholar 

  • Bridges, R. J., Nieto-Sampedro, M., and Cotman, C. W., 1985, Stereospecific binding of L- glutamate to astrocyte membranes, Soc. Neurosci. Abstr. 11: 110.

    Google Scholar 

  • Cassell, M. D., and Brown, M. W., 1984, The distribution of Timm’s stain in the non-sulphide perfused human hippocampal formation J. Comp. Neural. 222: 461–471.

    Article  Google Scholar 

  • Clemente, C. D., 1955, Structural regeneration in the mammalian CNS and the role of neu-roglia and connective tissue, in: Regeneration in the Central Nervous System ( W. F. Windle, ed.), Charles C. Thomas, Springfield, IL, pp. 147–161.

    Google Scholar 

  • Cotman, C. W., and Nieto-Sampedro, M., 1984, Cell biology of synaptic plasticity, Science 225: 1287–1294.

    Article  Google Scholar 

  • Cotman, C. W., Nieto-Sampedro, M., and Harris, E. W., 1981, Synapse replacement in the nervous system of adult vertebrates, Physiol. Rev. 61: 684–784.

    Google Scholar 

  • Cotman, C. W., Flatman, J. A., Ganong, A. H., and Perkins, M. N., 1986, Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea pig hippocampus, J. Physiol. (Lond.) 378: 403–415.

    Google Scholar 

  • Davies, J., Evans, R. H., Herrling, P. L., Jones, A. W., Olverman, H. J., Pook, P., and Watkins, J. C., 1986, CPP, a new potent and selective NMD A antagonist. Depression of central neuron responses, affinity for 3H-D-AP5 binding sites on brain membranes and anticon¬vulsant activity, Brain Res. 382: 169–173.

    Article  Google Scholar 

  • De Coursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D., 1984, Voltage-gated K + channels in human T lymphocytes: A role in mitogenesis? Nature 307: 465–468.

    Google Scholar 

  • Dela Torre, J. C., 1982, Catecholamine fiber regeneration accross a collagen bio-implant after spinal cord transection, Brain Res. Bull. 9: 545–552.

    Google Scholar 

  • Faden, A. I., 1983, Recent pharmacological advances in experimental spinal injury, Trends Neurosci. 6: 375–377.

    Article  Google Scholar 

  • Fallon, J., 1985, Neurite guidance by non-neuronal cells in culture: Preferential outgrowth of peripheral neurites on glial as compared to nonglial cell surfaces, J. Neurosci. 5:3169–3177.

    Google Scholar 

  • Fedoroff, S., and Doering, L., 1987, Transplantation of mouse astrocyte precursor cells cultured in vitro into neonatal cerebellum, Ann. N.Y. Acad. Sci. 495: 24–34.

    Article  Google Scholar 

  • Foster, A. C., Gill, R., Iverson, L. L., and Woodruff, G. N., 1987, Systems administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil, Br. J. Pharmacol 90: 9 P.

    Google Scholar 

  • Fujita, S., and Kitamura, T., 1976, Origin of the brain macrophages and the origin of the microglia, Prog. Neuropathol. 3: 1–50.

    Google Scholar 

  • Ganong, A. H., Jones, A. W., Watkins, J. C., and Cotman, C. W., 1986, Parallel antagonism of synaptic transmission and kainate/quisqualate responses in the hippocampus by piper- azine-2,3-dicarboxylic acid analogs, J. Neurosci. 6: 930–937.

    Google Scholar 

  • Ganong, A. H., Lanthorn, T. H., and Cotman, C. W., 1983, Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord, Brain Res. 273: 170–174.

    Article  Google Scholar 

  • Gearhart, J., Oster-Granite. M. L., and Guth, L., 1979, Histological changes after transection of the spinal cord of fetal and neonatal mice, Exp. Neurol. 66: 1–15.

    Google Scholar 

  • Geddes, J. W., Monaghan, D. T., Cotman, C. W., Lott, I. T., Kim, R. C., and Chui, H. C., 1985, Plasticity of hippocampal circuitry in Alzheimer’s disease, Science 230: 1179–1181.

    Article  Google Scholar 

  • Gibbs, R. B., Harris, E. W., and Cotman, C. W., 1985, Replacement of damaged cortical projections by homotypic transplants of entorhinal cortex, J. Comp. Neurol. 237: 47–64.

    Article  Google Scholar 

  • Gibbs, R. B., Anderson, K., and Cotman, C. W., 1987, Factors affecting innervation in the CNS: Comparison of three cholinergic cell types transplanted to the hippocampus of adult rats, Brain Res. 383: 362–366.

    Google Scholar 

  • Giulian, D., and Baker, T. J., 1985, Peptides released by ameboid microglia regulate astroglial proliferation, J. Cell Biol. 101: 2411–2415.

    Article  Google Scholar 

  • Guth, L., Barrett, C. P., Donati, E. J., Dashpande, S. S., and Albuquerque, E., 1981, Histopathological reactions and axonal regeneration in the transected spinal cord of hibernating squirrels, J. Comp. Neurol. 203: 297–308.

    Article  Google Scholar 

  • Hansson, E., Ronnback, L., Lowenthal. A., and Noppe, M., 1985, Primary cultures from defined brain areas: Effects of seeding time on cell growth, astroglial content and protein synthesis, Dev. Brain Res. 21: 175–185.

    Article  Google Scholar 

  • Hansson, E., 1985, Primary cultures from defined brain areas; effects of seeding time on the development of (3-adrenergic- and dopamine-stimulated cAMP-activity during cultivation, Dev. Brain Res. 21: 187–192.

    Article  Google Scholar 

  • Harris, E. W., Ganong, A. H., Monaghan, D. T., Watkins, J. C., and Cotman, C. W., 1986, Action of CPP: A new and highly potent antagonist of NMD A receptors in the hippocampus, Brain Res. 382: 174–177.

    Article  Google Scholar 

  • Hatten, M. E., 1985, Neuronal regulation of astroglial morphology and proliferation in vitro, J. Cell Biol. 100: 384–396.

    Article  Google Scholar 

  • Heacock, A. M., Schonfeld, A. R., and Katzman, R., 1986, Hippocampal neurotrophic factor: Characterization and response to denervation, Brain Res. 363: 299–306.

    Article  Google Scholar 

  • Hirano, A., 1969, The fine structure of brain in edema, in: The Structure and Function of the Nervous Tissue ( G. H. Bourne, ed.), Academic Press, New York, pp. 69–135.

    Google Scholar 

  • Kalderon, N., 1987, The astrocyte and the failure of CNS neural regeneration: A study of innoculated astrocytes in a PNS regenerating model system, Ann. N.Y. Acad. Sci. 495:722–725.

    Google Scholar 

  • Kao, C. C., and Chang, L. W., 1977, The mechanism of spinal cord cavitation following spinal cord transection. Part 1: A correlative histochemical study, J. Neurosurg. 46: 197–206.

    Article  Google Scholar 

  • Kesslak, J. P., Nieto-Sampedro, M., Globus, J., and Cotman, C. W., 1986, Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation, Exp. Neurol. 92: 377–390.

    Google Scholar 

  • Kettenmann, H., and Schachner, M., 1985, Pharmacological properties of 7-aminobutyric acid-, glutamate- and aspartate-induced depolarizations in cultured astrocytes, J. Neurosci. 5: 3295–3301.

    Google Scholar 

  • Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res. 239: 57–69.

    Article  Google Scholar 

  • Klatzo, I., 1967, Neuropathological aspects of brain edema, J. Neuropathol. Ept. Neurol. 26: 1–14.

    Article  Google Scholar 

  • Korschig, S., Auburger, G., Heumann, R., Scott, J., andThoenen, H., 1985, Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation, EMBO J. 4: 1389–1393.

    Google Scholar 

  • Krikorian, J. G., Guth, L., and Donati, E., 1981, The origin of connective tissue scar in the transected rat spinal cord, Exp. Neurol. 72: 698–707.

    Google Scholar 

  • Kromer, L. F., Bjorklund, A., and Stenevi, U., 1984, Intracephalic embryonic implants in the adult brain. I. Growth and mature organization of brainstem, cerebellar and hippocampal implants, J. Comp. Neurol. 218: 433–459.

    Google Scholar 

  • Kromer, L. F., Bjorklund, A., and Stenevi, U., 1980, Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult brain, Brain Res. 210: 153–171.

    Google Scholar 

  • Labbe, R., Firl, E. F., Jr., Mufson, E. J., and Stein, D. G., 1983, Fetal brain transplants: Reduction of cognitive deficits in rats with frontal cortex lesions, Science 221: 470–472.

    Article  Google Scholar 

  • Lemke, G. E., and Brockes, J. P., 1984, Identification and purification of glial growth factor, J. Neurosci. 4: 75–83.

    Google Scholar 

  • Levi-Montalcini, R., and Angeletti, P. U., 1968, Nerve growth factor, Physiol. Rev. 48:534–569.

    Google Scholar 

  • Lewis, E. R., and Cotman, C. W., 1983, Neurotransmitter characteristics of brain grafts: Striatal and septal tissues form the same laminated input to hippocampus, Neuroscience 8:57–66.

    Google Scholar 

  • Lieberman, A. R., 1971, The axon reaction: A review of the principal features of perikaryal responses to axonal injury, Int. Rev. Neurobiol. 14: 49–124.

    Article  Google Scholar 

  • Liesi, P., Dahl, D., and Vaheri, A., 1983, Laminin is produced by early rat astrocytes in primary culture, J. Cell Biol. 96: 920–924.

    Article  Google Scholar 

  • Liesi, P., Dahl, D., and Vaheri, A., 1984, Neurons cultured from developing rat brain attach and spread preferentially to laminin, J. Neurosci. Res. 11: 241–251.

    Article  Google Scholar 

  • Liesi, P., Kaakkola, S., Dahl, D., and Vaheri, A., 1984, Laminin is induced in astrocytes of adult brain by injury, EMBO J. 3: 683–686.

    Google Scholar 

  • Lim, R., 1985, Glia maturation factor and other factors acting on glia, in: Growth and Maturation Factors, Volume 3 ( G. Guroff, ed.), John Wiley & Sons, New York, pp. 119–147.

    Google Scholar 

  • Lindsay, R. M., 1979, Adult rat brain astrocytes support the survival of both NGF-dependent and NGF-insensitive neurons, Nature 282: 80–82.

    Article  Google Scholar 

  • Lindsay, R. M., and Raisman, G., 1983, An autoradiographic study of neuronal development, vascularization and neuronal cell migration from hippocampal transplants labelled in intermedi-ate explant culture, J. Neurosci. 12: 513–530.

    Google Scholar 

  • Loesche, J., and Steward, O., 1977, Behavioral correlates of denervation and reinervation of the hippocampal formation of the rat: recovery of alternation performance following unilateral entorhinal cortex lesions, Brain Res. Bull. 2: 31–39.

    Google Scholar 

  • Lundberg, J. J., and M0llgard, K., 1979, Mitotic activity in adult rat brain induced by implantation of pieces of fetal rat braen and liver, Neurosci. Lett. 13: 265–270.

    Google Scholar 

  • Manthorpe, M., Envall, E., Ruoslahti, E., Longo, F. M., Davis, G. E., and Varon, S., 1983, Laminin promotes neurite regeneration from cultured peripheral and central neurons, J. Cell Biol. 97: 1882–1890.

    Article  Google Scholar 

  • Manthorpe, M., Nieto-Sampedro, M., Skaper, S. D., Lewis, E. R., Barbin, G., Longo, F. M., Cotman, C. W., and Varon, S., 1983, Neuronotrophic activity in wounds of the developing rat. Correlation with implant survival in the wound cavity, Brain Res. 267: 47–56.

    Article  Google Scholar 

  • McCarthy, K. D., and de Vellis, J., 1980, Preparation of separate astroglial and oligo- dendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890–902.

    Article  Google Scholar 

  • Meldrum, B., 1985, Possible applications of antagonists of excitatory amino acid neurotrans-mitter, Clin. Sci. 68: 113–122.

    Google Scholar 

  • Miller, R. H., Abney, E. R., David, S., ffrench-Constant, C., Lindsay, R., Patel, R., Stone, J., and Raff, M. C., 1986, Is reactive gliosis a property of a distinct subpopulation of astro¬cytes ? J. Neurosci. 6: 22–29.

    Google Scholar 

  • Miller, R., and Raff, M. C., 1984, Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct, J. Neurosci. 4: 585–592.

    Google Scholar 

  • Miiller, H. W., and Seifert, W., 1982, A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res. 8: 195–204.

    Article  Google Scholar 

  • Needels, D. L., Nieto-Sampedro, M., and Cotman, C. W., 1986, Induction of a neurite- promoting factor in rat brain following injury or deafferentation, Neuroscience 18: 517–526.

    Article  Google Scholar 

  • Needels, D. L., Nieto-Sampedro, M., Whittemore, S. R., and Cotman, C. W., 1985, Neu-ronotrophic activity for ciliary ganglion neurons. Induction following injury to the brain of neonatal, adult and aged rats, Dev. Brain Res. 18: 275–284.

    Article  Google Scholar 

  • Newman, E. A., 1986, High potassium conductance in astrocyte end feet, Science 233:453–454.

    Google Scholar 

  • Nicklas, W. J., 1986, Glia-neuronal interrelationships in the metabolism of excitatory amino acids, in: Excitatory Amino Acids ( P. J. Roberts, J. Storm-Mathisen, and H. F. Bradford, eds.), Macmillan, London, pp. 57–66.

    Google Scholar 

  • Nieto-Sampedro, M., and Cotman, C. W., 1985, Growth factor induction and temporal order in CNS repair, in: Synaptic Plasticity ( C. W. Cotman, ed.), Guilford Press, New York, pp. 407–455.

    Google Scholar 

  • Nieto-Sampedro, M., Lewis, E. R., Cotman, C. W., Manthorpe, M., Skaper, S. D., Barbin, G., Longo, F. M., and Varon, S., 1982, Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site, Science 221: 860–861.

    Google Scholar 

  • Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S., and Cotman, C. W., 1983, Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity, J. Neurosci. 3: 2219–2229.

    Google Scholar 

  • Nieto-Sampedro, M., Saneto, R. P., de Vellis, J., and Cotman, C. W., 1985, The control of glial populations in brain: Changes in astrocyte mitogenic and morphogenic factors in response to injury, Brain Res. 343: 320–328.

    Article  Google Scholar 

  • Nieto-Sampedro, M., Whittemore, S. R., Needels, D. L., Larson, J., and Cotman, C. W., 1984, The survival of brain transplants is enhanced by extracts from injured brain, Proc. Natl. Acad. Sci. U.S.A. 81: 6250–6254.

    Article  Google Scholar 

  • Noble, M., Fok-Seang, J., and Cohen, J., 1984, Glia are a unique substrate for the in vitro growth of central nervous system neurons, J. Neurosci. 4: 1892–1903.

    Google Scholar 

  • Oblinger, M. M., and Das, G. D., 1982, Connectivity of neural transplants in adult rats: Analysis of afferents and efferents of neocortical transplants in the cerebellar hemisphere, Brain Res. 249: 31–49.

    Article  Google Scholar 

  • Peacock, J. H., Rush, D. E., and Mathers, L. H., 1979, Morphology of dissociated hippocam¬pal cultures from fetal mice, Brain Res. 169: 231–246.

    Article  Google Scholar 

  • Pettmann, B., Weibel, M., Sensenbrenner, M., and Labourdette, G., 1985, Purification of two astroglial growth factors from bovine brain, FEBS Lett. 189: 102–108.

    Article  Google Scholar 

  • Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R., and Noble, M., 1983, Two types of astrocytes in cultures of developing rat white matter: Differences in morphology, surface gangliosides, and growth characteristics, J. Neurosci. 6: 1289–1300.

    Google Scholar 

  • Raisman, G., Lawrence, J. M., Zhou, C.-F., and Lindsay, R. M., 1985, Some neuronal, glial and vascular interactions which occur when developing hippocampal primordia are incorporat¬ed into adult host hippocampi, in: Neural Grafting in the Mammalian CNS ( A. Bjorklund and U. Stenevi, eds.), Elsevier, New York.

    Google Scholar 

  • Ramon y Cajal, S., 1928, Degeneration and Regeneration in the Nervous System, Hoffner, New York.

    Google Scholar 

  • Reier, P. J., Stensaas, L. J., and Guth, L., 1983, The astrocytic scar as an impediment to regeneration in the central nervous system, in: Spinal Cord Reconstruction ( C. C. Kao, R. P. Bunge, and P. J. Reier, eds.), Raven Press, New York, pp. 163–195.

    Google Scholar 

  • Rogers, S. L., Letourneau, P. C., Palm, S. L., Mc Carthy, J., and Furcht, L. T., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin, Dev. Biol. 98: 212–220.

    Google Scholar 

  • Rothman, S. M., and Olney, J. W., 1986, Glutamate and the pathology of hypoxic/ischemic brain damage, Ann. Neurol. 19: 105–111.

    Article  Google Scholar 

  • Rothman, S. M., 1984, Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death, J. Neurosci. 4: 1884–1891.

    Google Scholar 

  • Rothman, S. M., 1985, The neurotoxicity of excitatory amino acids is produced by passive chloride influx, J. Neurosci. 5: 1483–1489.

    Google Scholar 

  • Rudge, J. S., Manthorpe, M., and Varon, S., 1985, The output of neuronotrophic and neurite — promoting agents from rat brain astroglial cells: A microculture method for screening potential regulatory molecules, Dev. Brain Res. 19: 161–172.

    Article  Google Scholar 

  • Sapolsky, R. M., and Pulsinelli. W. A., 1985, Glucocorticoid toxicity in the hippocampus: Temporal aspects of neuronal vulnerability, Science 229: 1397–1400.

    Article  Google Scholar 

  • Scheff, S. W., Benardo, L., and Cotman, C. W., 1980, Decline in reactive fiber growth in the dentate gyrus of aged rats compared to young adult rats following entorhinal cortex removal, Brain Res. 199: 21–38.

    Article  Google Scholar 

  • Schousboe, A., and Divac, I., 1979, Differences in glutamate uptake in astrocytes cultured from different brain regions, Brain Res. 177: 407–409.

    Article  Google Scholar 

  • Schousboe, A., Drejer, J., and Divac, I., 1980, Regional heterogeneity in astroglial cells. Implications of neuron-glia interactions, Trends Neurosci. 3:XIII-XIV.

    Google Scholar 

  • Shelton, D. L., and Reichardt, L. F., 1986, Studies on the expression of the (3 nerve growth factor (NGF) gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons, Proc. Natl. Acad. Sci. U.S.A. 83: 2714–2718.

    Article  Google Scholar 

  • Silver, J., 1986, Use of transplanted astroglial cells to direct callosal fibers in the adult brain, Ann. N.Y. Acad. Sci. 495: 185–206.

    Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S., 1984, Blockage of N-methyl-D- aspartate receptors may protect against ischemic damage in the brain, Science 226: 850–852.

    Article  Google Scholar 

  • Stenevi, U., Bjorklund, A., and Svendgaard, N.-A., 1976, Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival, Brain Res. 114: 1–20.

    Article  Google Scholar 

  • Sturrock, R. R., 1982, Cell division in the normal central nervous system, Adv. Cell Neu- robiol. 3: 3–33.

    Google Scholar 

  • Sunde, N., and Zimmer, J., 1983, Cellular, histochemical and connective organization of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brain, Dev. Brain Res. 8: 165–191.

    Article  Google Scholar 

  • Thomas, K. A., and Gimenez-Gallego, G., 1986, Fibroblast growth factors: Broad spectrum mitogens with potent angiogenic activity, Trends Biochem. Sci. 11: 81–84.

    Google Scholar 

  • Whittemore, S. R., Ebendal, T., Larkfors, L., Olson, L., Seiger, A., Stromberg, I., and Persson, H., 1986, Developmental and regional expression of (3 nerve growth factor mRNA and protein in the rat central nervous system, Proc. Natl. Acad. Sci. U.S.A. 83: 817—821.

    Google Scholar 

  • Whittemore, S. R., Nieto-Sampedro, M., Needels, D., and Cotman, C. W., 1985, Neu-ronotrophic factors for mammalian brain neurons: Injury induction in neonatal, adult and aged rat brain, Dev. Brain Res. 20: 169–178.

    Article  Google Scholar 

  • Wictorin, K., Fischer, W., Williams, L. R., Varon, S., Bjorklund, A., and Gage, F. H., 1985, Loss of acetylcholine esterase positive cells and choline acetyl transferase activity in the septal area and diagonal band of Broca following fimbria-fornix transection, Neurosci. Abstr. 11: 257

    Google Scholar 

  • Wieloch, T., 1986, Endogenous excitotoxins as possible mediators of ischemic and hypo-glycemic brain damage, Prog. Brain Res. 63: 69–85.

    Article  Google Scholar 

  • Windle, W. F., 1956, Regeneration of axons in the vertebrate central nervous system, Physiol. Rev. 36: 427–440.

    Google Scholar 

  • Wong, E. H. F., Kemp, J. A., Priestley, T., Knight, A. R., Woodruff, G. N., and Iversen, L. L., 1986, The novel anticonvulsant MK-801 is a potent NMDA antagonist, Proc. Natl. Acad. Sci. U.S.A. 83: 7104–7108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press

About this chapter

Cite this chapter

Nieto-Sampedro, M. (1988). Growth Factor Induction and Order of Events in CNS Repair. In: Stein, D.G., Sabel, B.A. (eds) Pharmacological Approaches to the Treatment of Brain and Spinal Cord Injury. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0927-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0927-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8249-5

  • Online ISBN: 978-1-4613-0927-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics