Skip to main content

Abstract

Neuroontogenesis results from the integration of various elementary events such as cell proliferation, migration, and death, synaptogenesis, and synaptolysis. This chapter describes those aspects of the mechanisms involved in nervous system development that might potentially help to improve the management of nervous system injury. Some of these aspects are (1) the neuronal proliferation that has been shown to persist in some instances in the brain of adult birds and mammals and (2) the neuronal migration that involves complex cellular and molecular interactions between neurons and guiding glial cells. Some of these interactions would also play a role in the control of axonal elongation. Also involved are (3) the neuronotrophic influences of various origins that are thought to regulate neuronal cell survival, including the well-demonstrated model of nerve growth factor. Neuronal survival could, however, result from a delicate balance between these neuronotrophic influences and recently described endogenous neuronotoxic activities, which are in some cases related to the putative excitatory neurotransmitters glutamate and aspartate. Finally, there is (4) the role of astrocytic cells in the release of neuronotrophic and neuronotoxic activities and the control by growth (mitogenic) factors of the proliferation of developing astrocytes and oligodendrocytes that play a major role in brain reaction to injury.

Understanding the regulation of these developments events might potentially expand research into new therapeutic areas and generate new concepts concerning neuronal replacement, prevention of secondary neuronal cell death, stimulation of neuronal regeneration, and control of glial cell proliferation in the injured nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arenella, L., and Herndon, R. M., 1984, Mature oligodendrocytes: Division following experimental demyelination in adult animals, Arch. Neurol. 41: 1162–1165.

    Google Scholar 

  • Astrup, J., and Norberg, K., 1976, Potassium activity in cerebral cortex in rat during progressive severe hypoglycemia, Brain Res. 103: 418–423.

    Google Scholar 

  • Banker, G., 1980, Trophic interactions between astroglial cells and hippocampal neurons in culture, Science 209: 809–810.

    Google Scholar 

  • Barbin, G., Manthorpe, M., and Varon, S., 1984, Purification of the chick eye ciliary neu-ronotrophic factor (CNTF), J. Neurochem. 43: 1468–1478.

    Google Scholar 

  • Barde, Y. A., Edgar, D., and Thoenen, H., 1982, Purification of a new neuronotrophic factor from mammalian brain, Eur. Mol. Biol. Org. J. 1: 549–553.

    Google Scholar 

  • Baron-Van Evercooren, A., Leprince, P., Rogister, B., Lefebvre, P. P., Delree, P., Selak, I., and Moonen, G., 1986, Plasminogen activators in developing peripheral nervous system, cellular origin and mitogenic effect, Dev. Brain Res. 36: 101–108.

    Google Scholar 

  • Bayer, S. A., 1985, Neuron production in the hippocampus and olfactory bulb of the adult rat brain: Addition or replacement ? Ann. N.Y. Acad. Sci. 457: 163–172.

    Google Scholar 

  • Ben-Ari, Y., Tremblay, E., Ottersen, O. P., and Naquet, R., 1979, Evidence suggesting secondary epileptogenic lesions after kainic acid: Pretreatment with diazepam reduces distant, not local brain damage, Brain Res. 165: 362–365.

    Google Scholar 

  • Bjorklund, A., and Gage. F. H., 1985, Neural grafting in animal models of neurodegenerative diseases, N.Y. Acad. Sci. 457: 53–81.

    Google Scholar 

  • Bocchini, V., and Angeletti, P. U., 1969, The nerve growth factor: Purification as a 30,000 molecular weight protein, Proc. Nad. Acad. Sci. U.S.A. 64: 787–794.

    Google Scholar 

  • Brashaw, A., and Rubin, J. S., 1980, Polypeptide growth factors: Some structural and mechanistic considerations, J. Supramol. Struct. 14: 183–199.

    Google Scholar 

  • Carbonetto, S., 1984, The extracellular matrix of the nervous system, Trends Neurosci. 10: 382–387.

    Google Scholar 

  • Changeux, J. P., and Danchin, A., 1976, Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks, Nature 264: 705–712.

    Google Scholar 

  • Clarke, P. G. H., 1985, Neuronal death in the development of the vertebrate nervous system, Trends Neurosci. 8: 345–349.

    Google Scholar 

  • Clarren, S. K., Alvord, E. C., and Sumi, S. M., 1978, Brain malformations related to prenatal exposure to ethanol, J. Pediatr. 92: 64–72.

    Google Scholar 

  • Davis, G. E., Manthorpe, M., Engvall, E., and Varon, S., 1985, Isolation and characterization of rat schwannoma neurite-promoting factor: Evidence that the factor contains laminin, J. Neurosci. 5: 2662–2671.

    Google Scholar 

  • Davis, G. E., Varon, S., Engvall, E., and Manthorpe, M., 1985, Substratum-binding neurite- promoting factors: Relationship to laminin, Trends Neurosci. 12: 528–532.

    Google Scholar 

  • Dubois-Dalcq, M., Rentier, B., Baron-Van Evercooren, A., and Burge, B., 1981, Structure and behaviour of rat primary and secondary Schwann cells in vivo, Exp. Cell Res. 131:283- 297.

    Google Scholar 

  • Edelman, G. M., Hoffman, S., Chuong, C.-M., Thiery, J.-P., Brackenbury, R., Gallin, W. J., Grumet, M., Greenberg, M. E., Hemperly, J. J., Cohen, C., and Cunningham, B. A., 1983, Structure and modulation of neural cell adhesion molecules in early and late embryo- genesis, Cold Spring Harbor Symp. Quant. Biol. 48: 515–526.

    Google Scholar 

  • Edgar, D., and Barde, Y.-A., 1983, Neuronal growth factors, Trends Neurosci. 6: 260–262.

    Google Scholar 

  • Fischer, G., 1984, Growth requirements of immature astrocytes in serum-free hormonally defined medium, J. Neurosci. Res. 12: 543–552.

    Google Scholar 

  • Franck, G., Grisar, T., and Moonen, G., 1983, Glial and neuronal Na+, K+ pump, Adv. Cell. Neurobiol. 4: 133–159.

    Google Scholar 

  • Fuller, T. A., and Olney, J. W., 1981, Only certain anticonvulsants protect against kainate neurotoxicity, Neurobehav. Toxicol. Teratol. 3: 355–361.

    Google Scholar 

  • Fushiki, S., and Schachner, M., 1986, Immunocytological localization of cell adhesion molecules Lj and N-CAM and the shared carbohydrate epitope L2 during the development of the mouse neocortex, Dev. Brain Res. 24: 153–157.

    Google Scholar 

  • Gadisseux, J. F., and Evrard, R., 1985, Glial-neuronal relationship in the developing central nervous system, Dev. Neurosci. 7: 12–32.

    Google Scholar 

  • Gibbs, W., Neale, E. A., and Moonen, G., 1982, Kainic acid sensitivity of mammalian Purkinje cells in monolayer cultures, Dev. Brain Res. 4: 103–108.

    Google Scholar 

  • Goldman, S. A., and Nottebohm, F., 1983, Neuronal production, migration and differentiation in a vocal control nucleus of adult female canary brain, Proc. Natl. Acad. Sci. U.S.A. 80: 2390–2394.

    Google Scholar 

  • Grau-Wagemans, M.-P., Selak, I., Lefebvre, P. P., and Moonen, G., 1984, Cerebellar mac- roneurons in serum-free cultures: Evidence for intrinsic neuronotrophic and neuronotoxic ac-tivities, Dev. Brain Res. 15: 11–19.

    Google Scholar 

  • Graziadei, P. P. C., and Monti Graziadei, G. A., 1985, Neurogenesis and plasticity of the olfactory sensory neurons, Ann. N.Y. Acad. Sci. 457: 127–142.

    Google Scholar 

  • Greene, L. A., and Shooter, E. M., 1980, The nerve growth factor: biochemistry, synthesis and mechanism of action, Annu. Rev. Neurosci. 3: 352–402.

    Google Scholar 

  • Griffiths, T., Evans, M. C., and Meldrum, B. S., 1982, Intracellular sites of early calcium accumulation in the rat hippocampus during status epilepticus, Neurosci. Lett. 30: 329—334.

    Google Scholar 

  • Grumet, M., and Edelman, G. M., 1984. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule, J. Cell Biol. 98:1746- 1756.

    Google Scholar 

  • Guenther, J., Nick, H., and Monard, D, 1985, A glia-derived neurite promoting factor with protease inhibitory activity, EMBO J. 4: 1963–1966.

    Google Scholar 

  • Hamburger, V., and Oppenheim, R. W., 1982, Naturally occuring neuronal death in vertebrates, Neurosci. Comm. 1: 39–55.

    Google Scholar 

  • Hansen, A. J., 1977, Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia, Acta Physiol. Scand. 99: 412–420.

    Google Scholar 

  • Harris, R. J., Symon, L., Bransdon, N. M., and Bayhan, M., 1981, Changes in extracellular calcium activity in cerebral ischemia, J. Cereb. Blood Flow Metab. 1: 203–210.

    Google Scholar 

  • Heinemann, U., Konnerth, A., Pumain, R., and Wadman, W. J., 1986, Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue, in: Advances in Neurology, Volume 44 (A. V. Delgado-Escueta, A. A. Ward, Jr., D. M. Woodbury, and R. J. Porter, eds.), Raven Press, New York, pp. 641–661.

    Google Scholar 

  • Henn, F. A., Goldstein, M., and Hamberger, A., 1974, Uptake of the neurotransmitter candi¬date glutamate by glia, Nature 249: 663–664.

    Google Scholar 

  • Hirn, M., Deagostini-Bazin, H., Gennarini, G., Santoni, M. J., He, H.-T., Hirsch, M. R., and Goridis, C., 1985, Structural and functional studies on N-CAM neural cell adhesion molecules, J. Physiol. (Paris) 80: 247–254.

    Google Scholar 

  • Holmes, C. B., 1974, Inborn errors of morphogenesis. A review of localized hereditary malformations, N. Engl. J. Med. 291: 763–773.

    Google Scholar 

  • Kaplan, M. S., and Hinds, J. W., 1977, Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs, Science 197: 1092–1094.

    Google Scholar 

  • Kohler, C., 1983, Neuronal degeneration after intracerebral injections of excitotoxins. A histological analysis of kainic acid, ibotenic acid and quinolinic acid lesions in the rat brain, in: Excitotoxins ( K. Fuxe, P. Roberts, and R. Schwarcz, eds.), Macmillan, London, pp. 99–111.

    Google Scholar 

  • Kuffler, S. W., and Nicholls, J. G., 1966, The physiology of glial cells, Ergeb. Physiol. 57:1- 90.

    Google Scholar 

  • Lauder, J. M., 1983, Hormonal and humoral influences in brain development, Psychoneuroen- docrinology 8: 121–155.

    Google Scholar 

  • Lauder, J. M., and Krebs, H., 1978, Serotonin and early neurogenesis, in: Maturation of Neurotransmission ( A. Vernadakis, E. Giacobini, and G. Filogamo, eds.), S. Karger, Basel, pp. 171–180.

    Google Scholar 

  • Lefebvre, P. P., Rogister, B., Delree, P., Leprince, P., Selak, I., and Moonen, G., 1986, Potassium-induced release of neuronotoxic activity by astrocytes Brain Res. 413: 120–128.

    Google Scholar 

  • Lemke, G. E., and Brockes, J. P., 1984, Identification and purification of glial growth factor, J. Neurosci. 4: 75–83.

    Google Scholar 

  • Leutz, A., and Schachner, M., 1981, Epidermal growth factor stimulates DNA-synthesis of astrocytes in primary cerebellar cultures, Cell Tissue Res. 220: 393–404.

    Google Scholar 

  • Liesi, P., Kirkwood, T., and Vaheri, A., 1986, Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain, Exp. Cell Res. 163: 175–185.

    Google Scholar 

  • Lim, R., and Miller, J. F., 1984, An improved procedure for the isolation of glia maturation factor, J. Cell. Physiol. 119: 255–259.

    Google Scholar 

  • Lindner, J., Rathjen, F. G., and Schachner, M., 1983, L, mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum, Nature 305: 427–430.

    Google Scholar 

  • Lindsay, R. M., Barber, P. C., Sherwood, M. R., Zimmer, J., and Raisman, G., 1982, Astrocyte cultures from adult rat brain. Derivation, characterization and neurotrophic proper¬ties of pure astroglial cells from corpus callosum, Brain Res. 243: 329–343.

    Google Scholar 

  • Lothman, E., Lamanna, J., Cordingley, G., Rosenthal, M., and Somjen, G., 1974, Levels of potassium in the cerebral cortex during electrical stimulation, seizures and spreading depres-sion, Soc. Neurosci. Abstr. 4: 315.

    Google Scholar 

  • Ludwin, S., 1985, Reaction of oligodendrocytes and astrocytes to trauma and implantation. A combined autoradiographic and immunohistochemical study, Lab. Invest. 52: 29–30.

    Google Scholar 

  • Lundborg, G., Longo, F. M., and Varon, S., 1982, Nerve regeneration model and trophic factors in vivo, Brain Res. 232: 157–161.

    Google Scholar 

  • Manthorpe, M., Engvall, E., Ruoslahti, E., Longo, F. M., Davis, G. E., and Varon, S., 1983, Laminin promotes neurite regeneration from cultured peripheral and central neurons, J. Cell Biol. 97: 1882–1890.

    Google Scholar 

  • McGarvey, M. L., Baron-Van Evercooren, A., Kleinman, A. K., and Dubois-Dalcq, M., 1984, Synthesis and effects of basement membrane component in cultured rat Schwann Cells, in: The Role of Extracellular Matrix in Development ( R. L. Trelstad, ed.), Alan R. Liss, New York, pp. 123–143.

    Google Scholar 

  • Meldrum, B. S., 1985, Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters, Clin. Sci. 68: 113–122.

    Google Scholar 

  • Meldrum, B. S., 1986, Cell damage in epilepsy and the role of calcium in cytotoxicity, in: Advances in Neurology, Volume 44 (A. V. Delgado-Escueta, A. A. Ward, Jr., D. M. Wood-bury, and R. J. Porter, eds.), Raven Press, New York, pp. 849–855.

    Google Scholar 

  • Michler-Stuke, A., Wolff, J. R., and Bottenstein, J. E., 1984, Factors influencing astrocyte growth and development in defined media, Int. J. Dev. Neurosci. 2: 575–584.

    Google Scholar 

  • Moonen, G., and Franck, G., 1977, Potassium effect on Na +,K + -ATPase activity of cultured newborn rat astroblasts during differentiation, Neurosci. Lett. 4: 263–267.

    Google Scholar 

  • Moonen, G., Grau-Wagemans, M.-P., and Selak, I., 1982, Plasminogen activator-plasmin system and neuronal migration, Nature 298: 753–755.

    Google Scholar 

  • Moonen, G., Grau-Wagemans, M.-P., Selak, I., Lefebvre, P. P., Rogister, B., Vassalli, J. D., and Belin, D., 1985, Plasminogen activator is a mitogen for astrocytes in developing cere-bellum, Dev. Brain Res. 20: 41–48.

    Google Scholar 

  • Moonen, G., Heinen. E., and Goessens, G., 1976, Comparative ultrastructural study of the effects of serum-free medium and dibutyryl-cyclic AMP on newborn rat astroblasts, Cell Tissue Res. 167: 221–227.

    Google Scholar 

  • Moonen, G., and Nelson, P. G., 1978, Some physiological properties of astrocytes in primary cultures, in: Dynamic Properties of Glia Cells ( E. Schoffeniels, G. Franck, D. B. Tower, and L. Hertz, eds.), Pergamon Press, New York, pp. 389–393.

    Google Scholar 

  • Moonen, G., Selak, I., and Grau-Wagemans, M.-P., 1987, In vitro analysis of glial-neuronal communication during cerebellum ontogenesis, in: Glial-Neuronal Communication in Devel-opment and Regeneration, NATO ASI Series H, Volume 2 ( H. H. Althaus and W. Seifert, eds.), Springer-Verlag, Berlin, pp. 324–337.

    Google Scholar 

  • Muller, H. W., and Seifert, W., 1982, A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res. 8: 195–204.

    Google Scholar 

  • Nieto-Sampedro, M., Lewis, E. R., Cotman, C. W. Manthorpe, M., Skaper, S. D., Barbin, G., Longo, F. M., and Varon, S., 1982, Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site, Science 217: 860–861.

    Google Scholar 

  • Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S., and Cotman, C. W., 1983, Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity, J. Neurosci. 3: 2219–2229.

    Google Scholar 

  • Nottebohm, F., 1985, Neuronal replacement in adulthood, Ann. N.Y. Acad. Sci. 457: 143–161.

    Google Scholar 

  • Olney, J. W., 1983, Excitotoxins: An overview, in: Excitotoxins ( K. Fuxe, P. Roberts, and R. Schwarcz, eds.), Macmillan, London, pp. 82–96.

    Google Scholar 

  • Olney, J. W., Collins, R. C., and Sloviter, R. S., 1986, Excitotoxic mechanisms of epileptic brain damage, in: Advances in Neurology, Volume 44 ( A. D. Delgado-Escueta, A. A. Ward, Jr., D. M. Woodbury, and R. J. Porter, eds.), Raven Press, New York, pp. 857–877.

    Google Scholar 

  • Olney, J. W., Fuller, T. A., Degubareff, T., and Labruyere, J., 1981, Intrastriatal folic acid mimics the distant but not local brain damaging properties of kainic acid, Neurosci. Lett. 25: 207–210.

    Google Scholar 

  • Olney, J. W., Fuller, V. A., and Degubareff, T., 1981, Kainate-like neurotoxicity of folates, Nature 292: 165–167.

    Google Scholar 

  • Olney, J. W., Labruyere, J., Collins, J. F., and Curry, K., 1981, D-Aminophosphonovalerate is 100-fold more powerful than D-a-amino adipate in blocking N-methylaspartate neurotox¬icity, Brain Res. 221: 207–210.

    Google Scholar 

  • Olson, L., Backlund, E. O., Freed, W., Herrera-Marschitz, M., Hoffer, B., Seiger, A., and Stromberg, I., 1985, Transplantation of monoamine-producing cell systems in oculo and intracranially: Experiments in search of a treatment for Parkinson’s disease, Ann. N.Y. Acad. Sci. 457: 105–126.

    Google Scholar 

  • Paton, J. A., and Nottebohm, F. N., 1984, Neurons generated in the adult brain are recruited into functional circuits, Science 225: 1046–1048.

    Google Scholar 

  • Petteman, B., Labourdette, G., Weibel, M., and Sensenbrenner, M., 1986, The brain fibro¬blast growth factor (FGF) is localized in neurons, Neurosci. Lett. 68: 175–180.

    Google Scholar 

  • Price, J., and Hynes, R. O., 1985, Astrocytes in culture synthesize and secrete a variant form of fibronectin, J. Neurosci. 8: 2205–2211.

    Google Scholar 

  • Prince, D. A., Pedley, T. A., and Ransom, B. R., 1978, Flucfuations in ion concentrations during excitation and seizures, in: Dynamic Properties of Glia Cells ( E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, London, pp. 281–303.

    Google Scholar 

  • Rakic, P., 1981, Neuronal glial interaction during brain development, Trends Neurosci. 4: 240–244.

    Google Scholar 

  • Rakic, P., 1985, DNA synthesis and cell division in the adult primate brain, Ann. N.Y. Acad. Sci. 457: 193–212.

    Google Scholar 

  • Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N., andGoldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.

    Google Scholar 

  • Ransom, B. R., and Goldring, S., 1973, Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat, J. Neurophysiol. 36: 885–886.

    Google Scholar 

  • Rogers, S. L., Letourneau. P. C., Palm, S. L., McCarthy, J., and Farcht, L. T., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin, Dev. Biol. 98: 212–220.

    Google Scholar 

  • Rudge, J. S., Manthorpe, M., and Varon, S., 1985, The output of neuronotrophic and neurite- promoting agents from rat brain astroglial cells: A microculture method for screening potential regulatory molecules, Dev. Brain Res. 19: 161–172.

    Google Scholar 

  • Rutishauser, U., 1983, Molecular and biological properties of a neural cell adhesion molecule, Cold Spring Harbor Symp. Quant. Biol. 48: 501–514.

    Google Scholar 

  • Saneto, R. P., and De Vellis, J., 1985, Effect of mitogens in various organs and cell culture conditioned media on rat oligodendrocytes, Dev. Neurosci. 7: 340–350.

    Google Scholar 

  • Schachner, M., Faissner, A., Kruse, J., Lindner, J., Meier, D. H., Rathjen, F. G., and Wernecke, H., 1983, Cell-type specificity and developmental expression of neural cell-surface components involved in cell interactions and of structurally related molecules, Cold Spring Harbor Symp. Quant. Biol. 48: 557–568.

    Google Scholar 

  • Schanne, F. A. X., Kane, A. B., Young, E. E., and Farber, J. L., 1979, Calcium dependence of toxic cell death: A common pathway, Science 206: 700–702.

    Google Scholar 

  • Schwarcz, R., Whetsell, W. O., Jr., and Foster, A. C., 1983, The neurodegenerative properties of intracerebral quinolinic acid and its structural analog c/s-2,3,-piperidine dicarboxylic acid, in: Excitotoxins (K. Fuxe, P. Roberts, R. Schwarcz, eds.), Macmillan, London, pp. 122- 137.

    Google Scholar 

  • Selak, I., Foidart, J. M., and Moonen, G., 1985, Laminin promotes cerebellar granule cells migration in vitro and is synthesized by cultured astrocytes, Dev. Neurosci. 7: 278–285.

    Google Scholar 

  • Selak, I., Skaper, S. D., and Varon, S., 1985, Pyruvate participation in the low mole¬cular weight trophic activity for CNS neurons in gliaconditioned media, J. Neurosci. 5: 23–28.

    Google Scholar 

  • Sensenbrenner, M., Labourdette, G., Delaunoy, J. P., Pettman, B., Devillers, G., Moonen, G., and Bocq, E., 1980, Morphological and biochemical differentiation of glial cells in primary culture, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), Raven Press, New York, pp. 385–395.

    Google Scholar 

  • Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H., and Meldrum, B. S., 1984, Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: An E.M. study in the rat, J. Cereb. Blood Flow Metab. 4: 350–361.

    Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S., 1984, Pharmacologic blockade of excitatory amino acid neurotransmission attenuates the neuropathologic damage of ischemia, Ann. Neurol. 16: 112–124.

    Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S., 1984, N-Methyl-D-aspartate receptor blockade prevents ischemia brain damage, Science 226: 850–852.

    Google Scholar 

  • Simpson, D. L., Morrison, R., De Vellis, J., and Herschman, H. R., 1982, Epidermal growth factor binding and mitogenic activity in purified populations of cells from the central nervous system, J. Neurosci. Res. 8: 453–462.

    Google Scholar 

  • Soreq, H., and Miskin, R., 1983, Plasminogen activator in the developing rat cerebellum: Biosynthesis and localization in granular neurons, Dev. Brain Res. 11: 149–159.

    Google Scholar 

  • Thoenen, H., and Barde, Y. A., 1980, Physiology of nerve growth factor, Physiol. Rev 60: 1284–1335.

    Google Scholar 

  • Varon, S., 1985, Factors promoting the growth of the nervous system, Discussion in Neuro-science, FSNS (Foundation for the Study of the Nervous System), Volume II, No. 3, pp. 1–62.

    Google Scholar 

  • Varon, S., and Adler, R., 1980, Nerve growth factors and control of nerve growth, Curr. Top Dev. Biol. 16: 207–252.

    Google Scholar 

  • Varon, S., Nomura, J., and Shooter, E. M., 1967, The isolation of the mouse nerve growth factor protein in a high molecular weight form, Biochemistry 6: 2202–2209.

    Google Scholar 

  • Varon, S., Raiborn, S., and Burnham, P. A., 1974, Comparative effects of nerve growth factor and ganglionic non-neuronal cells on purified mouse ganglionic neurons in culture. J. Neu robiol. 5: 355–371.

    Google Scholar 

  • Vyskocil, F., Kriz, N., and Bures, J., 1972, Potassium selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolariza tion, Brain Res. 39: 255–259.

    Google Scholar 

  • Westermark, B., 1976, Density-dependent proliferation of human glia cells stimulated by epidermal growth factor, Biochem. Biophys. Res. 69: 304–310.

    Google Scholar 

  • Wood, P. M., and Bunge, R. P., 1986, Evidence that axons are mitogenic for oligodendrocytes isolated from adult animals, Nature 320: 756–758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press

About this chapter

Cite this chapter

Moonen, G., Delree, P., Leprince, P., Rigo, JM., Rogister, B., Lefebvre, P.P. (1988). Developmental Neurobiology and the Physiopathology of Brain Injury. In: Stein, D.G., Sabel, B.A. (eds) Pharmacological Approaches to the Treatment of Brain and Spinal Cord Injury. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0927-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0927-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8249-5

  • Online ISBN: 978-1-4613-0927-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics