Skip to main content

L-Glutamate and Its AgonistsSynaptic and Ionic Mechanisms in the Central Nervous System

  • Chapter
Neurotransmitters and Cortical Function

Abstract

Since the pioneering studies of Curtis et al. (1960) on spinal neurons, the excitatory amino acids L-glutamate (Glu) and L-aspartate (Asp) have been considered as neurotransmitter candidates in the vertebrate CNS. Both Glu and Asp are present in large quantities in brain nervous tissue (about 10 and 2 mM, respectively) (Berl and Waelsch, 1958; Perry et al., 1981; Schousboe et al., 1975); Glu is released from several cortical areas following stimulation of afferent pathways (Jasper and Koyama, 1969), this release being calcium dependent (see review by Fonnum, 1984); increased Glu release has been observed during electroencephalographic wakefulness (Jasper et al., 1965); and studies in vitro have indicated that Glu is predominantly released from nerve terminals (Potashner, 1978a,b). In addition, it has been shown that Glu and Asp induce large and fast depolarizations when applied onto neurons (Curtis et al., 1972) and low-and high-affinity uptake mechanisms have been demonstrated in neurons and glia for these amino acids (Logan and Snyder, 1972; Balcar and Johnston, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann H., ten Bruggencate, G., Pickelmann. P., and Steinberg, R., 1976, Effects of glutamate, aspartate, and two presumed antagonists on feline rubrospinal neurons, Pfluegers Arch. 364:249–255.

    Article  CAS  Google Scholar 

  • Anwyl, R., 1977, Permeability of the post-synaptic membrane of an excitatory glutamate synapse to sodium and potassium. J. Physiol. (London) 273:367–388.

    CAS  Google Scholar 

  • Arenson, M. S., and Nistri, A., 1985, The effect of potassium channel blocking agents on the responses of in vitro frog motoneurones to glutamate and other excitatory amino acids: An intracellular study, Neuroscience 14:317–325.

    Article  PubMed  CAS  Google Scholar 

  • Ault, B., Evans, R. H., Francis, A. A., Oakes, D. J., and Watkins, J. C., 1980, Selective depression of excitatory amino acid-induced depolarizations by magnesium ions in isolated spinal cord preparations, J. Physiol. (London) 307:413–428.

    CAS  Google Scholar 

  • Balcar, V. J., and Johnston, G. A. R., 1972, The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem. 19:2657–2666.

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky, E., Riveros, N., Sanchez-Armass, S., and Orrego, F., 1983, Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro, Neurosci. Lett. 36:75–80.

    Article  PubMed  CAS  Google Scholar 

  • Berl, S., and Waelsch, H., 1958, Determination of glutamic acid, glutamine gluthathione and γ-aminobutyric acid and their distribution in brain tissues, J. Neurochem. 3:161–169.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G., Zieglgänsberger, W., Herz, A., and Puil, E., 1972, Intracellular studies on the action of L-glutamic acid on spinal neurones of the cat, Brain Res. 39:523–525.

    Article  PubMed  CAS  Google Scholar 

  • Boll, W., and Lux, H. D., 1985, Action of organic antagonists on neuronal calcium currents, Neurosci. Lett. 56:335–339.

    Article  PubMed  CAS  Google Scholar 

  • Bührle, C., and Sonnhof, U., 1983, The ionic mechanism of the excitatory action of glutamate upon the membranes of motoneurones of the frog, Pfluegers Arch. 396:154–162

    Article  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983a, The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro, J. Physiol. (London) 334:19–31.

    CAS  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983b, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol. (London) 334:33–46.

    CAS  Google Scholar 

  • Constanti, A., Connor, J. D., Galvan, M., and Nistri, A., 1980, Intracellularly-recorded effects of glutamate and aspartate on neurones in the guinea-pig olfactory cortex slice, Brain Res. 195:403–422.

    Article  PubMed  CAS  Google Scholar 

  • Croucher, M. J., Collins, J. F., and Meldrum, B. S., 1982, Anticonvulsant action of excitatory amino acid antagonists, Science 216:899–901.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli, V., and Mayer, M. L., 1984, Mg2+ dependence of membrane resistance increases evoked by NMDA in hippocampal neurones, Brain Res. 311:392–396.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli, V., Forda, S., and Kelly, J. S., 1984, The reversal potential of excitatory amino acid action on granule cells of the rat dentate gyrus, J. Physiol. (London) 351:327–342.

    CAS  Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian central nervous system, Ergeb. Physiol. 67:97–188.

    Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. (London) 150:656–682.

    CAS  Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K., and Watkins, J. C., 1972, Excitation of mammalian central neurones by acidic amino acids, Brain Res. 41:283–301.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., and Watkins, J. C., 1985, Depressant action of gamma-D-glutamylaminomethyl sulfonate (GAMS) on amino acid induced and synaptic excitation in the cat spinal cord, Brain Res. 327:113–120.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., Francis, A. A., Jones, A. W., and Watkins, J. C., 1981, 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino-acid-induced and synaptic excitation, Neurosci. Lett. 21:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R., 1983, N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J. Physiol. (London) 343:385–406.

    CAS  Google Scholar 

  • Engberg, I., Flatman, J. A., and Lambert, J. D. C., 1978, The action of N-methyl-D-aspartic and kainic acids on motoneurones with emphasis on conductance changes, Br. J. Pharmacol. 64:384–385.

    Google Scholar 

  • Engberg, I., Flatman, J. A., and Lambert, J. D. C., 1979, The actions of excitatory amino acids on motoneurones in the feline spinal cord, J. Physiol. (London) 288:227–261.

    CAS  Google Scholar 

  • Flatman, J. A., Schwindt, P. C., Crill, W. E., and Stafstrom, C. E., 1983, Multiple actions of N-methyl-D-aspartate on cat neocortical neurons in vitro, Brain Res. 266:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Flatman, J. A., Schwindt, P. C., and Crill, W. E., 1986, The induction and modification of voltage-sensitive responses in cat neocortical neurons by N-methyl-D-aspartate, Brain Res. 363:62–77.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., 1984, Glutamate: A neurotransmitter in mammalian brain, J. Neurochem. 42:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Francis, A. A., Jones, A. W., and Watkins, J. C., 1980, Dipeptide antagonists of amino acid-induced and synaptic excitation in the frog spinal cord, J. Neurochem. 35:1458–1460.

    Article  PubMed  CAS  Google Scholar 

  • Hablitz, J. J., 1982, Conductance changes induced by DL-homocysteic acid and N-methyl-DL-aspartic acid in hippocampal neurons, Brain Res. 247:149–153.

    Article  PubMed  CAS  Google Scholar 

  • Hablitz, J. J., and Langmoen, I. A., 1982, Excitation of hippocampal pyramidal cells by glutamate in the guinea-pig and rat, J. Physiol. (London) 325:317–331.

    CAS  Google Scholar 

  • Harris, E. W., Ganong, A. H., and Cotman, C. W., 1984, Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors, Brain Res. 323:132–137.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., and Pumain, R., 1980, Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids, Exp. Brain Res. 40:247–250.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., and Pumain, R., 1981, Effects of tetrodotoxin on changes in extracellular free calcium induced by repetitive electrical stimulation and iontophoretic application of excitatory amino acids in the sensorimotor cortex of cats, Neurosci. Lett. 21:87–91.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., and Pumain, R., 1988, Changes in the brain cell microenvironment and their functional consequences, Physiol. Rev., (in preparation).

    Google Scholar 

  • Herron, C. E., Lester, R. A. J., Coan, E. J., and Collingridge, G. L., 1985, Intracellular demonstration of an N-methyl-d-aspartate receptor mediated component of synaptic transmission in the rat hippocampus, Neurosci. Lett. 60:19–23.

    Article  PubMed  CAS  Google Scholar 

  • Herron, C. E., Lester, R. A. J., Coan, E. J., and Collingridge, G. L., 1986, Frequency-dependent involvement of NMDA receptors in the hippocampus: A novel synaptic mechanism, Nature 322:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1976, L-Glutamate as an excitatory transmitter at the “drosophila” larval neuromuscular junction, J. Physiol. (London) 262:215–236.

    CAS  Google Scholar 

  • Jasper, H. H., and Koyama, I., 1969, Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation, Can. J. Physiol. Pharmacol. 47:889–905.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, H. H., Khan, R. T., and Elliott, K. A. C., 1965, Amino acids released from cerebral cortex in relation to its state of activation, Science 147:1448–1449.

    Article  PubMed  CAS  Google Scholar 

  • Koerner, J. F., and Cotman, C. W., 1982, Response of Shaffer collateral-CAl pyramidal cell synapses of the hippocampus to analogues of acidic amino acids, Brain Res. 251:105–115.

    Article  PubMed  CAS  Google Scholar 

  • Krnjević, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:419–540.

    Article  Google Scholar 

  • Krnjević, K., and Schwartz, S., 1967, Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3:306–319.

    Article  PubMed  Google Scholar 

  • Langmoen, I. A., and Hablitz, J. J., 1981, Reversal potential for glutamate responses in hippocampal pyramidal cells, Neurosci. Lett. 23:61–65.

    Article  CAS  Google Scholar 

  • Lanter, F., Erne, D., Ammann, D., and Simon W., 1980, Neutral carrier based ion-selective electrode for intracellular magnesium activities studies, Anal. Chem. 52:2400–2402.

    Article  CAS  Google Scholar 

  • Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res. 42:413–431.

    Article  PubMed  CAS  Google Scholar 

  • Luini, A., Goldberg, O., and Teichberg, V. I., 1983, Differential sensitivity of selected brain areas to excitatory amino acids, Neurosci. Lett. 41:307–312.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321:519–522.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, J. F., and Porietis, A., 1982, DL-Quisqualic and L-aspartate acids activate separate excitatory conductances in cultured spinal cord neurons, Brain Res. 245:175–178.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, J. F., and Wojtowicz, J. M., 1980, Two conductance mechanisms activated by applications of L-glutamic, L-aspartic, DL-homocysteic, N-methyl-D-aspartic, and DL-kainic acids to cultured mammalian central neurones, Can. J. Physiol. Pharmacol. 58:1393–1397.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, J. F., and Wojtowicz, J. M., 1982, The effects of L-glutamate and its analogues upon the membrane conductance of central murine neurones in culture, Can. J. Physiol. Pharmacol. 60:282–296.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, J. F., Porietis, A., and Wojtowicz, J. M., 1982, L-Aspartic acid induces a region of negative slope conductance in the current-voltage relationship of cultured spinal cord neurons, Brain Res. 237:248–253.

    Article  PubMed  CAS  Google Scholar 

  • McLennan, H., 1981, On the nature of the receptors for various excitatory amino acids in the mammalian central nervous system, in: Glutamate as a Neurotransmitter (G. Di Chiara and G. L. Gessa, eds.), Raven Press, New York, pp. 253–262.

    Google Scholar 

  • McLennan, H., and Lodge, D., 1979, The antagonism of amino acid-induced excitation of spinal neurones in the cat, Brain Res. 169:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Martin, A. R., Wickelgren, W. O., and Beranek, R., 1970, Effect of iontophoretically applied drugs on spinal interneurons of the lamprey, J. Physiol. (London) 207:653–665.

    CAS  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L., 1984, Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp, J. Physiol. (London) 354:29–53.

    CAS  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L., 1985, The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture, J. Physiol. (London) 361:65–90.

    CAS  Google Scholar 

  • Mayer, M. L., Westbrook, G. L., and Guthrie, P. B., 1984, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons, Nature 309:250–263.

    Article  Google Scholar 

  • Meldrum, B. S., Croucher, M. J., Badman, G., and Collins, J. F., 1983, Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio, Neurosci. Lett. 39:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. J., and Sheardown, M. J., 1986, Amino acid receptor-mediated excitatory synaptic transmission in the rat red nucleus, J. Physiol. (London) 376:14–30.

    Google Scholar 

  • Monaghan, D. T., Holets, V. R., Toy, D. W., and Cotman, C. W., 1983, Anatomical distribution of four pharmacological distinct 3H-L-glutamate binding sites, Nature 306:176–179.

    Article  PubMed  CAS  Google Scholar 

  • Nistri, A., Arenson, M. S., and King, A., 1985, Excitatory amino acid-induced responses of frog motoneurones bathed in low Na+ media: An intracellular study, Neuroscience 14:921–927.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature 307:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, K., and Takeuchi, A., 1976, Permeability changes produced by L-glutamate at the excitatory postsynaptic membrane of the crayfish muscle, J. Physiol. (London) 255:669–685.

    CAS  Google Scholar 

  • Perry, T. L., Hansen, S., and Gandham, S. S., 1981, Post mortem changes of amino compounds in human and rat brain, J. Neurochem. 36:406–412.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S. J., 1978a, The spontaneous and electrically evoked release, from slices of guinea-pig cerebral cortex, of endogenous amino acids labelled via metabolism of D-[U-14C]glucose, J. Neurochem. 31:177–186.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S. J., 1978b, Effects of tetrodotoxin, calcium and magnesium on the release of amino acids from slices of guinea-pig cerebral cortex, J. Neurochem. 31:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Puil, E., 1981, S-Glutamate: Its interactions with spinal neurons, Brain Res. Rev. 3:229–322.

    CAS  Google Scholar 

  • Pumain, R., and Heinemann, U., 1985, Stimulus- and amino acid-induced calcium and potassium changes in rat neocortex, J. Neurophysiol. 53:1–16.

    PubMed  CAS  Google Scholar 

  • Pumain, R., Menini, C, Heinemann, U., Louvel, J., and Silva-Barrat, C, 1985, Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio, Exp. Neurol. 89:250–258.

    Article  PubMed  CAS  Google Scholar 

  • Pumain, R., Kurcewicz, I., and Louvel, J., 1986a, Ionic concomitants in chronic epilepsies, in: Epilepsy and Calcium (E.-J. Speckmann, H. Schulze, and J. Walden, eds.), Urban & Schwarzenberg, Munich, pp. 207–226.

    Google Scholar 

  • Pumain, R., Louvel, J., and Kurcewicz, I., 1986b, Long-term alterations in amino acid-induced ionic conductances in chronic epilepsy, in: Amino Acids and Epilepsy (Y. Ben Ari and R. Schwarcz, eds.), Plenum Press, New York, pp. 439–447.

    Google Scholar 

  • Pumain, R., Kurcewicz, I., and Louvel, J., 1987, Ionic changes induced by excitatory amino acids in the rat cerebral cortex, Can. J. Physiol. Pharmacol. 65:1067–1077.

    Article  PubMed  CAS  Google Scholar 

  • Salt, T. E., 1986, Mediation of thalamic sensory inputs by both NMDA- and non-NMDA receptors, Nature 322:263–265.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe, A., 1981, Transport and metabolism of glutamate and GABA in neurons and glia cells, Int. Rev. Neurobiol. 22:1–45.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe, A., Fosmark, H., and Hertz, L., 1975, High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: Effect of serum withdrawal and of cyclic AMP, J. Neurochem. 25:909–911.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., 1981, The actions of glutamic acid on neurons in the rat hippocampal slice, in: Glutamate as a Neurotransmitter (G. Di Chiara and G. L. Gessa, eds.), Raven Press, New York, pp. 217–225.

    Google Scholar 

  • Shapovalov, A. I., Shiriaev, B. I., and Velumanian, A. A., 1978, Mechanisms of post-synaptic excitations in amphibian motoneurones, J. Physiol. (London) 279:437–455.

    CAS  Google Scholar 

  • Thomson, A. M., 1986, A magnesium sensitive postsynaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate, J. Physiol. (London) 370:531–549.

    CAS  Google Scholar 

  • Thomson, A. M., West, D. C., and Lodge, D., 1985, An N-methyl-aspartate receptor mediated synapse in rat cerebral cortex: A site of action of ketamine, Nature 313:479–481.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, J. C., 1981, Pharmacology of excitatory amino acid transmitters, in: Amino Acid Neurotransmitters (F. V. De Feudis and P. Mandel, eds.), Raven Press, New York, pp. 205–212.

    Google Scholar 

  • Watkins, J. C., 1984, Excitatory amino acids and central synaptic transmission, Trends Pharmacol. Sci. 5:373–376.

    Article  CAS  Google Scholar 

  • Watkins, J. C., and Evans, R. H., 1981, Excitatory amino acids, Annu. Rev. Pharmacol. Toxicol. 21:165–204.

    Article  PubMed  CAS  Google Scholar 

  • Westbrook. G. L., and Mayer, M. L., 1984, Glutamate currents in mammalian spinal neurons: resolution of a paradox, Brain Res. 301:375–379.

    Article  PubMed  CAS  Google Scholar 

  • Zieglgänsberger, W., and Puil, E. A., 1972, Tetrodotoxin interference of CNS excitation by glutamic acid, Nature New Biol. 239:204–205.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Pumain, R., Kurcewicz, I., Louvel, J. (1988). L-Glutamate and Its AgonistsSynaptic and Ionic Mechanisms in the Central Nervous System. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics