Skip to main content

Molecular Controls and Communication in Cerebral Cortex

An Overview

  • Chapter
Neurotransmitters and Cortical Function

Abstract

The contributors to the present symposium have provided many fascinating and important highlights of recent research on the many neurotransmitters or modulators which have played a leading role in the remarkable advances being made during recent years in our understanding of the chemical and molecular mechanisms involved in the organization of cortical function. In this final chapter, we shall attempt to present some of our impressions of the overall importance of these developments with an emphasis on the subtitle of this book From Molecules to Mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aprison, M. H., Davidoff, R. A., and Werman, R., 1970, Glycine: Its metabolic and possible role in nervous tissue, in: Handbook of Neurochemistry, Vol. 4 (A. Lajtha, ed.), Plenum Press, New York, pp. 62–75.

    Google Scholar 

  • Bartolini, A., Weisenthal, L., and Domino, E. F., 1972, Effect of photic stimulation on acetylcholine release from cerebral cortex, Neuropharmacology 11:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Beani, L., Tanganelli, S., Antonelli, T., and Bianchi, C, 1986, Noradrenergic modulation of cortical acetylcholine release is both direct and gamma-aminobutyric acid-mediated, J. Pharmacol. Exp. Ther. 236:230–236.

    PubMed  CAS  Google Scholar 

  • Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A., and Descarries, L., 1978, The monoamine innervation of rat cerebral cortex: Synaptic and nonsynaptic axon terminals, Neuroscience 3:851–860.

    Article  PubMed  CAS  Google Scholar 

  • Bird, E. D., Spokes, E. G. S., and Iversen, L. L., 1979a, Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia, Brain 102:347–360.

    Article  PubMed  CAS  Google Scholar 

  • Bird, E. D., Spokes, E. G., and Iversen. L. L., 1979b, Brain norepinephrine and dopamine in schizophrenia, Science 204:93–94.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E., 1980, Peptides: Integrators of Cell and Tissue Function, Raven Press, New York.

    Google Scholar 

  • Bloom, F. E., 1984, The functional significance of neurotransmitter diversity, Am. J. Physiol. 246:C184–C194.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., 1985, Neurotransmitter diversity and its functional significance, J. R. Soc. Med. 78:189–192.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., 1986a, Whither neuropeptides? in: Neuropeptides in Neurologic and Psychiatric Disease (J. B. Martin and J. D. Barchas, eds.), Raven Press, New York, pp. 335–349.

    Google Scholar 

  • Bloom, F. E., 1986b, Genetic background for multiple messengers, Prog. Brain Res. 68:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E., and Morrison, J. H., 1986, Neurotransmitters of the human brain, Hum. Neurobiol. 5:145–146.

    Google Scholar 

  • Celesia, G., and Jasper, H. H., 1966, Acetylcholine released from cerebral cortex in relation to states of activation, Neurology 16:1053–1064.

    PubMed  CAS  Google Scholar 

  • DeLong, M. R., 1971, Activity of pallidal neurons during movement, J. Neurophysiol. 34:414–427.

    PubMed  CAS  Google Scholar 

  • Descarries, L., Reader, T. A., and Jasper, H. H. (eds.), 1984, Monoamine Innervation of Cerebral Cortex, Liss, New York.

    Google Scholar 

  • Diop, L., Brière, R., Grondin, L., and Reader, T. A., 1987, Adrenergic receptor and catecholamine distribution in rat cerebral cortex: Binding studies with [3H]prazosin, [3H]idazoxan and [3H]dihydroalprenolol, Brain Res. 402:403–408.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, K. A. C., 1958, γ-Aminobutyric acid and factor I, Rev. Can. Biol. 17:36–388.

    Google Scholar 

  • Elliott, K. A. C., and Jasper, H. H., 1959, Gamma-aminobutyric acid, Physiol. Rev. 39:383–406.

    PubMed  CAS  Google Scholar 

  • Fahn, S., and Cote, L., 1986, Regional distribution of γ-aminobutyric acid (GABA) in brain of rhesus monkey, J. Neurochem. 15:209–213.

    Article  Google Scholar 

  • Feldberg, W., 1945, Present views on the mode of action of acetylcholine in the central nervous system, Physiol. Rev. 25:596–642.

    PubMed  CAS  Google Scholar 

  • Ferron, A., Siggins, G. R., and Bloom, F. E., 1985, Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons, Proc. Natl. Acad. Sci. USA 82:8810–8812.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., Freedman, R., and Oliver, A. P., 1975, Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex, Brain Res. 86:229–242.

    Article  PubMed  CAS  Google Scholar 

  • Gainer, H., and Brownstein, M. J., 1981, Neuropeptides, in:Basic Neurochemistry, (G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), Little, Brown, Boston, pp. 269–296.

    Google Scholar 

  • Giarman, N. J., and Pepeu, G. C., 1964, The influence of centrally acting cholinolytic drugs on brain acetylcholine levels, Br. J. Pharmacol. Chemother. 23:123–130.

    PubMed  CAS  Google Scholar 

  • Greengard, P., 1978, Cyclic Nucleotides, Phosphorylated Proteins, and Neuronal Function, Raven Press, New York.

    Google Scholar 

  • Guidotti, A., Badiani, G., and Pepeu, G., 1972, Taurine distribution in cat brain, J. Neurochem. 19:431–435.

    Article  PubMed  CAS  Google Scholar 

  • Hobson, J. A., Lydic, R., and Baghdoyan, H. A., 1986, Evolving concepts of sleep cycle generation: From brain centers to neuronal populations, Behav. Brain Sci. 9:371–448.

    Article  Google Scholar 

  • Hökfelt, T., Johansson, D., and Goldstein, M., 1984, Chemical anatomy of the brain, Science 225:1326–1334.

    Article  PubMed  Google Scholar 

  • Hong, J. S., Yang, H. Y. T., Fratta, W., and Costa, E., 1977, Determination of methionine enkephalin in discrete regions of rat brain, Brain Res. 134:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Hoover, D. B., Muth, E. A., and Jacobowitz, D. M., 1978, A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain, Brain Res. 153:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., 1975, Dopamine receptors in the brain, Science 188:1084–1089.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., 1983, Nonopioid neuropeptides in mammalian CNS, Annu. Rev. Pharmacol. Toxicol. 23:1–27.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, S. D., 1984, Cortical monoamines and behaviour, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 321–349.

    Google Scholar 

  • Jasper, H. H., 1981, Problems of relating cellular or modular specificity to cognitive functions: Importance of state dependent reactions, in: The Organization of the Cerebral Cortex (F. O. Schmitt, F. G. Worden, G. Adelman, and S. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 375–393.

    Google Scholar 

  • Jasper, H. H., 1984, The saga of K. A. C. Elliott and GABA, Neurochem. Res. 9:449–460.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, H. H., and Koyama, I., 1969, Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation, Can. J. Physiol. Pharmacol. 47:889–905.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, H. H., and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep, Science 172:601–602.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, H. H., Khan, R. T., and Elliott, K. A. C., 1965, Amino acids released from the cerebral cortex in relation to the state of activation, Science 147:1448–1449.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, I., and Jessell, T., 1976, Postmortem changes and regional distribution of substance P in the rat and mouse nervous system, Brain Res. 117:362–367.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D., 1976, Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens, Science 194:206–209.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Itakura, T., Jonnson, G., Heggelund, P., Pettigrew, J. D., Nakai, K., Kazushige, W., Kuppermann, B. D., and Ary, M., 1984, Neuronal plasticity in cat visual cortex: A proposed role for the central noradrenaline system, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 301–319.

    Google Scholar 

  • Kety, S.S., 1970, The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning, in: The Neurosciences: Second Study Program (F. O. Schmidt, ed.), Rockefeller University Press, New York, pp. 324–336.

    Google Scholar 

  • >Kleinschmidt, A., Bear, M. F., and Singer, W., 1987, Evidence that activation of NMDA receptors is necessary for experience-dependent modifications of kitten striate cortex, (manuscript).

    Google Scholar 

  • Kolta, A., Diop, L., and Reader, T. A., 1987, Noradrenergic effects on rat visual cortex: Single-cell microiontophoretic studies of alpha-2 adrenergic receptors, Life Sci. 41:281–289.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, D. T., 1983, Brain peptides: What, where, and why? Science 222:975–985.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevié, K., 1964, Microiontophoretic studies on cortical neurons, Int. Rev. Neurobiol. 7:41–98.

    Article  Google Scholar 

  • Krnjević, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.

    Google Scholar 

  • Krnjević, K., 1984, Monoamine receptors in cortex: An introduction, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 125–133.

    Google Scholar 

  • Krnjević, K., and Schwartz, S., 1967, The action of γ-aminobutyric acid on cortical neurones, Exp. Brain Res. 3:320–336.

    Article  PubMed  Google Scholar 

  • Libet, B., Kobayashi, H., and Tanaka, T., 1975, Synaptic coupling into the production and storage of a neuronal memory trace, Nature 258:155–157.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski, J. F., Schaumberg, H. H., and Baldessarini, R. J., 1973, Regional distribution of histamine in the human brain, Brain Res. 52:403–408.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A., and Prince, D. A., 1985, Two types of muscarinic response to acetylcholine in mammalian cortical neurons, Proc. Natl. Acad. Sci. USA 82:6344–6348.

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh, F. C., 1941, The distribution of acetylcholine in the peripheral and the central nervous system, J. Physiol. (London) 99:436–442.

    CAS  Google Scholar 

  • MacIntosh, F. C., and Oborin, P. E., 1953, Release of acetylcholine from intact cerebral cortex, Abstr. XIX Int. Physiol. Congr. pp. 580–581.

    Google Scholar 

  • Magistretti, P. J., and Schorderet, M., 1984, VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex, Nature 308:280–282.

    Article  PubMed  CAS  Google Scholar 

  • Mancillas, J. R., Siggins, G. R., and Bloom, F. E., 1986, Somatostatin selectively enhances acetylcholine-induced excitations in rat hippocampus and cortex, Proc. Natl. Acad. Sci. USA 83:7518–7521.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., Mufson, E. J., Levey, A. I., and Wayner, B. H., 1983, Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214:170–197.

    Article  PubMed  CAS  Google Scholar 

  • Metherate, R., Tremblay, N., and Dykes, R. W., 1987, Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary, somatosensory cortex, Neuroscience 22:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Miller, F. R., Stavraky, G. W., and Woonton, G. A., 1940, Effects of eserine, acetylcholine and atropine on the electrocorticogram, J. Neurophysiol. 3:131–138.

    CAS  Google Scholar 

  • Mitchell, J. F., 1963, The spontaneous and evoked release of acetylcholine from the cerebral cortex, J. Physiol. (London) 165:98–116.

    CAS  Google Scholar 

  • Moroni, F., Tanganelli, S., Antonelli, T., Carla, V., Bianchi, C, and Beani, L., 1983, Modulation of cortical acetylcholine and gamma-aminobutyric acid release in freely moving guinea pigs: Effects of Clonidine and other adrenergic drugs, J. Pharmacol. Exp. Ther. 227:435–440.

    PubMed  CAS  Google Scholar 

  • Mullin, W. J., and Phillis, J. W., 1975, The effect of graded forelimb afferent volleys on acetylcholine release from cat sensorimotor cortex, J. Physiol. (London) 244:741–756.

    CAS  Google Scholar 

  • Nieuwenhuys, R., 1985, Chemoarchitecture of the Brain, Springer-Verlag, Berlin.

    Google Scholar 

  • Olpe, H. R., Glatt, A., Lazio, J., and Schellemberg, A., 1980, Some electrophysiological and pharmacological properties of the cortical noradrenergic projection of the locus coeruleus in the rat, Brain Res. 185:9–19.

    Article  Google Scholar 

  • Pepeu, G., 1973, The release of acetylcholine from the brain: An approach to the study of the central cholinergic mechanisms, Prog. Neurobiol. 2:257–288.

    Article  Google Scholar 

  • Perry, T. L., Berry, K., Diamond, S., and Mok, C, 1971, Regional distribution of amino acids in human brain obtained at autopsy, J. Neurochem. 18:513–519.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., 1977, The role of cyclic nucleotides in the CNS, Can. J. Neurol. Sci. 4:151–195.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., 1984, Microiontophoretic studies of cortical biogenic amines, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 175–194.

    Google Scholar 

  • Reader, T. A., 1978, The effects of dopamine, noradrenaline and serotonin in the visual cortex of the cat, Experientia 34:1586–1587.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., 1980, Microiontophoresis of biogenic amines on cortical neurons: Amounts of NA, DA and 5-HT ejected, compared with tissue contents, Acta Physiol. Lat. Am. 30:291–304.

    PubMed  CAS  Google Scholar 

  • Reader, T. A., 1983, The role of the catecholamines in neuronal excitability, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. van Gelder, eds.), Liss, New York, pp. 281–321.

    Google Scholar 

  • Reader, T. A., and Jasper, H. H., 1984, Interactions between monoamines and other transmitters in cerebral cortex, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 195–225.

    Google Scholar 

  • Reader, T. A., and Quesney, L. F., 1986, Dopamine in the visual cortex of the cat, Experientia 42:1242–1244.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., de Champlain, J., and Jasper, H. H., 1976, Catecholamines released from cerebral cortex in the cat: Decrease during sensory stimulation, Brain Res. 111:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., Ferron, A., Descarries, L., and Jasper, H. H., 1979a, Modulatory role for biogenic amines in the cerebral cortex: Microiontophoretic studies, Brain Res. 160:217–229.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., Masse, P., and de Champlain, J., 1979b, The intracortical distribution of norepinephrine, dopamine and serotonin in the cerebral cortex of the cat, Brain Res. 177:499–513.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., de Champlain, J., and Jasper, H. H., 1980, Participation of presynaptic and postsynaptic receptors in acetylcholine-catecholamine interactions in cerebral cortex, in: Presynaptic Receptors (S. Z. Langer, K. Starke, and M. L. Dubocovich, eds.), Pergamon Press, New York, pp. 363–369.

    Google Scholar 

  • Reader, T. A., Brière, R., Grondin, L., and Ferron, A., 1986, Effects of p-chlorophenylalanine on cortical monoamines and on the activity of noradrenergic neurons, Neurochem. Res. 11:1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L., 1983, Role of neuropeptides in the regulation of neural excitability, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. van Gelder, eds.), Liss, New York, pp. 323–360.

    Google Scholar 

  • Ribak, C. E., Harris, A. B., Vaughn, J. E., and Roberts, E., 1979, Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy, Science 205:211–214.

    CAS  Google Scholar 

  • Richardson, R. T., and DeLong, M. R., 1986, Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey, Brain Res. 399:364–368.

    Article  PubMed  CAS  Google Scholar 

  • Rigdon, G. G., and Pirch, J. H., 1986, Nucleus basalis involvement in conditioned neuronal response in the rat frontal cortex, J. Neurosci. 6:2535–2542.

    PubMed  CAS  Google Scholar 

  • Schmitt, F. O., 1984, Molecular regulators of brain function: A new view, Neuroscience 13:991–1001.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32:229–313.

    PubMed  CAS  Google Scholar 

  • Seeman, P., and Lee, T., 1975, Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons, Science 188:1217–1219.

    Article  PubMed  CAS  Google Scholar 

  • Sie, G., Jasper, H. H., and Wolfe, L., 1965, Rate of ACh release from cortical surface in ‘encephale’ and “cerveau isole” cat preparations in relation to arousal and epileptic activation of the ECoG, Electroencephalogr. Clin. Neurophysiol. 18:206.

    Article  Google Scholar 

  • Sillito, A. M., and Kemp, J. A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex, Brain Res. 289:143–155.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W., 1983, Neuronal mechanisms of experience-dependent self-organization of the mammalian visual cortex, Acta Morphol. Hung. 31:235–260.

    PubMed  CAS  Google Scholar 

  • Stone, T. W., Taylor, T. W., and Bloom, F. E., 1975, Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex, Science 187:845–846.

    Article  PubMed  CAS  Google Scholar 

  • Szerb, J. C., 1964, The effect of tertiary and quaternary atropine on cortical acetylcholine output and on the electroencephalogram in cats, Can. J. Physiol. Pharmacol. 42:303–314.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, H., Shiomi, H., Veda, H., and Amano, H., 1979, Morphine-like analgesia by a new dipeptide, 1-tyrosyl-l-arginine (Kyotorphin) and its analogue, Eur. J. Pharmacol. 55:109–111.

    Article  PubMed  CAS  Google Scholar 

  • Tanji, J., and Evarts, E. V., 1976, Anticipatory activity of motor cortex neurones in relation to direction of an intended movement, J. Neurophysiol. 39:1062–1068.

    PubMed  CAS  Google Scholar 

  • von Euler, U. S., and Gaddum, J. H., 1931, An unidentified depressor substance in certain tissue extracts, J. Physiol. (London) 192:74–87.

    Google Scholar 

  • Wamsley, J. K., 1984, Autoradiographic localization of cortical biogenic amine receptors, in: Monoamine Innervation of Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 153–174.

    Google Scholar 

  • Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and De Long, M. R., 1981, Alzheimer disease: Evidence for selective loss of cholinergic neurones in the nucleus basalis, Ann. Neurol. 10:122–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Jasper, H.H., Reader, T.A., Avoli, M., Dykes, R.W., Gloor, P. (1988). Molecular Controls and Communication in Cerebral Cortex. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics