Skip to main content

Adenosine: A Molecule for Synaptic Homeostasis?

Evolution of Current Concepts on the Physiological and Pathophysiological Roles of Adenosine in the Brain

  • Chapter

Abstract

Among the neurotransmitters and other neuroactive substances discussed in the previous chapters, adenosine is the endogenous molecule with the most commonly appreciated effects on the mind, as each cup of coffee may remind us. However, in contrast to the relatively well-established ideas about the transmitter amino acids, acetylcholine, and catecholamines, research on adenosine is currently faced with an increasing amount of data in need of an integrated functional scheme. Reflections on the way our ideas have evolved regarding several possible schemes will emphasize the mutual dependence between our understanding of synaptic transmission and the specific roles we often assign to endogenous neuroactive molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acan, S., Porter, N. M., and Proudfit, H. K., 1985, Potentiation of the antinociceptive effect of norepinephrine by the adenosine analog, 5′-N-ethylcarboxamide adenosine, Soc. Neurosci. Abstr. 41:6.

    Google Scholar 

  • Ahlijanian, M. K., and Takemori, A. E., 1985, Effects of (-)-N6-(R-phenyl-isopropyl)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice, Eur. J. Pharmacol. 112:171–179.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, T. E., Stark, L. G., Joy, R. M., and Bowyer, J. F., 1983, Aminophylline and kindled seizures, Exp. Neurol. 81:703–713.

    Article  PubMed  CAS  Google Scholar 

  • Barberis, C, Leviel, V., and Daval, J. L., 1985, Metabolism and release of purines from nervous tissue, in: Purines, Pharmacology and Physiological Roles (T. W. Stone, ed.), Macmillan Co., New York, pp. 107–114.

    Google Scholar 

  • Barraco, R. A., Swanson, T. H., Phillis, J. W., and Berman, R. F., 1984, Anticonvulsant effects of adenosine analogs on amygdaloid-kindled seizures in rats, Neurosci. Lett. 46:317–322.

    Article  PubMed  CAS  Google Scholar 

  • Bender, A. S., Wu, P. H., and Phillis, J. W., 1981, The rapid uptake and release of [3H] adenosine by rat cerebral cortical synaptosomes, J. Neurochem. 36:651–660.

    Article  PubMed  CAS  Google Scholar 

  • Berne, R. M., Rubio, R., and Curnish, R. R., 1974, Release of adenosine from ischemic brain: Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides, Circ. Res. 35:262–271.

    CAS  Google Scholar 

  • Berne, R. M., Rail, T. W., and Rubio, R., 1983, Regulatory Function of Adenosine, Nijhoff, The Hague.

    Google Scholar 

  • Bickford, P. C., Fredholm, B. B., Dunwiddie, T. V., and Freedman, R., 1985, Inhibition of Purkinje cell firing by systemic administration of phenylisopropyl adenosine: Effect of central noradrenaline depletion by DSP4, Life Sci. 37:289–297.

    Article  PubMed  CAS  Google Scholar 

  • Bisserbe, J. C., Patel, J., and Marangos, P. J., 1985, Autoradiographic localization of adenosine uptake sites in rat brain using [3H]nitrobenzylthioinosine, J. Neurosci. 5:544–550.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., 1975, The role of cyclic nucleotides in central synaptic function, in: Reviews of Physiology, Biochemistry and Pharmacology, Vol. 74, (R. H. Adrian, E. Helmzeich, H. Holzec et al., eds.) Springer-Verlag, Berlin, pp. 1–103.

    Google Scholar 

  • Bloom, F. E., 1984, The functional significance of neurotransmitter diversity, Am. J. Physiol. C184–C194.

    Google Scholar 

  • Boulenger, J. P., Marangos, P. J., Zander, K. J., and Hanson, J., 1986, Stress and caffeine: Effects on central adenosine receptors, Clin. Neuropharmacol. 9:79–83.

    Article  PubMed  CAS  Google Scholar 

  • Bourke, R. S., Kimelberg, H. K., Dazé, M. A., and Church, G., 1983, Swelling and ion uptake in cat cerebrocor-tical slices: Control by neurotransmitters and ion transport mechanisms, Neurochem. Res. 8:5–24.

    Article  PubMed  CAS  Google Scholar 

  • Bruns, R. F., Daly, J. W., and Snyder, S. H., 1983, Adenosine receptor binding: Structure-activity analysis generates extremely potent xanthine antagonists, Proc. Natl. Acad. Sei. USA 80:2077–2080.

    Article  CAS  Google Scholar 

  • Buday, P. V., Carr, C. J., and Miya, T. S., 1961, A pharmacologic study of some nucleosides and nucleotides, J. Pharm. Pharmacol. 13:290–299.

    Article  CAS  Google Scholar 

  • Burley, E. S., and Ferendelli, J. A., 1984, Regulatory effects of neurotransmitters on electroshock and pentylenetetrazol seizures, Fed. Proc. 43:2521–2524.

    PubMed  CAS  Google Scholar 

  • Burnstock, G., 1986, The changing face of autonomic neurotransmission, Acta Physiol. Scand. 126:67–91.

    Article  CAS  Google Scholar 

  • Burnstock, G., Campbell, G., Bennett, M., and Holman, M. E., 1963, Inhibition of the smooth muscle of the taenia coli, Nature 200:581–582.

    Article  PubMed  CAS  Google Scholar 

  • Coffin, V. L., and Carney, J. M., 1983, Behavioral pharmacology of adenosine analogs, in: Physiology and Pharmacology of Adenosine Derivatives (J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui, eds.), Raven Press, New York, pp. 267–274.

    Google Scholar 

  • Coffin, V. L., Taylor, J. A., Phillis, J. W., Altman, H. J., and Barraco, R. A., 1984, Behavioral interaction of adenosine and methylxanthines in central purinergic systems, Neurosci. Lett. 47:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, M., Langrebe, M., and Landgrebe, A., 1986, Purine seizure disorders, Epilepsia 27:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Cuello, A. C. (ed.), 1982, Co-transmission, Macmillan & Co., London.

    Google Scholar 

  • Daly, J. W., 1983, Role of ATP and adenosine receptors in physiologic processes: Summary and prospective, in: Physiology and Pharmacology of Adenosine Derivatives (J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui, eds.), Raven Press, New York, pp. 275–290.

    Google Scholar 

  • Daly, J. W., Kuroda, Y., Phillis, J. W., Shimizu, H., and Ui, M. (eds.), 1983, Physiology and Pharmacology of Adenosine Derivatives, Raven Press, New York.

    Google Scholar 

  • Daly, J. W., Padgett, W., Shamin, M. T., Butts-Lamb, P., and Waters, J., 1985, l,3-Dialkyl-8-(p-sulfophenyl) xanthines: Potent water-soluble antagonists for Ar and A2-adenosine receptors, J. Med. Chem. 28:487–492.

    Article  PubMed  CAS  Google Scholar 

  • Davies, L. P., and Hambley, J. W., 1986, Regional distribution of adenosine uptake in guinea-pig brain slices and the effect of some inhibition: Evidence for nitrobenzylthioinosine-sensitive and insensitive sites? Neurochem. Int. 8:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Davies, L. P., Brown, D. J., Chen Chow, S., and Johnston, G. A. R., 1983, Pyrazolo [3,4-d] pyrimidines, a new class of adenosine antagonists, Neurosci. Lett. 41:189–193.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A. C., 1983, The adenosine agonist 2-chloroadenosine inhibits the induction of long term potentiation of the perforant path, Neurosci. Lett. 39: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M., Goddard, G. V., and Laverty, R., 1985, Is adenosine an endogenous anticonvulsant? Epilepsia 26:480–487.

    Article  PubMed  CAS  Google Scholar 

  • Drury, A. N., and Szent-Györgyi, A., 1929, The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart, J. Physiol. (London) 68:213–237.

    CAS  Google Scholar 

  • Dunwiddie, T. V., 1980, Endogenously released adenosine regulates excitability in the in vitro hippocampus, Epilepsia 21:541–548.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., 1985, The physiological role of adenosine in the central nervous system, Int. Rev. Neurobiol. 27:63–139.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., and Worth, T., 1982, Sedative and anticonvulsant effects of adenosine analogs in mouse and rat, J. Pharmacol. Exp. Ther. 220:70–76.

    PubMed  CAS  Google Scholar 

  • Edstrom, J. P., and Phillis, J. W., 1976, The effects of AMP on the potential of rat cerebral cortical neurons, Can. J. Physiol. Pharmacol. 54:787–790.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, K. A. C., and Penfield, W., 1948, Respiration of glycolysis of focal epileptogenic human brain tissue, J. Neurophysiol. 11:485–490.

    PubMed  CAS  Google Scholar 

  • Feldberg, W., and Sherwood, S. L., 1954, Injections of drugs into the lateral ventricle of the cat, J. Physiol. (London) 123:148–167.

    CAS  Google Scholar 

  • Forrester, T., Harper, A. M., MacKenzie, E. T., and Thompson, E. M., 1979, Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism, J. Physiol. (London) 296:343–355.

    CAS  Google Scholar 

  • Fredholm, B. B., and Hedquist, P., 1980, Modulation of neurotransmission by purine nucleotides and nucleosides, Biochem. Pharmacol. 29:1635–1643.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B., and Vernet, L., 1978, Morphine increases depolarization induced purine release from hypothalamic synaptosomes, Acta Physiol. Scand. 104:502–504.

    Article  CAS  Google Scholar 

  • Geiger, J. D., and Glavin, G. B., 1985, Adenosine receptor activation in brain reduces stress-induced ulcer formation, Eur. J. Pharmacol. 115:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, J. D., Labella, F. S., and Nagy, J. J., 1984, Ontogenesis of adenosine receptors in the central nervous system of the rat, Dev. Brain Res. 13:97–104.

    Article  CAS  Google Scholar 

  • Ginsborg, B. L., and Hirst, G. D. S., 1972, The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat, J. Physiol. (London) 224:629–645.

    CAS  Google Scholar 

  • Gloor, P., Pellegrini, A., and Kostopoulos, G., 1979, Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of the cat, Electroencephalogr. Clin. Neurophysiol. 46:274–289.

    Article  PubMed  CAS  Google Scholar 

  • Glowa, G. R., and Spealman, R. D., 1984, Behavioral effect of caffeine, N6-(l-phenyl-isopropyl) adenosine and their combination in the squirrel monkey, J. Pharmacol. Exp. Ther. 231:665–670.

    PubMed  CAS  Google Scholar 

  • Goodman, R. R., and Snyder, S. H., 1982, Autoradiographic localization of adenosine receptors in rat brain using [3H] cyclohexyladenosine, J. Neurosci. 2:1230–1241.

    PubMed  CAS  Google Scholar 

  • Goodman, R. R., Kuhar, M. J., Hester, L., and Snyder, S. H., 1983, Adenosine receptors: Autoradiographic evidence for their location on axon termials of excitatory neurons, Science 220:967–969.

    Article  PubMed  CAS  Google Scholar 

  • Greene, R. W., Haas, H. L., and Hermann, A., 1985, Effects of caffeine on hippocampal pyramidal cells in vitro, Br. J. Pharmacol. 85:163–169.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., and Jefferys, J. G. R., 1984, Low-calcium field burst discharges of CA1 pyramidal neurons in rat hippocampal slices, J. Physiol. (London) 354:185–201.

    CAS  Google Scholar 

  • Haulica, I., Ababei, L., Branisteanu, D., and Topoliceanu, F., 1973, Preliminary data on the possible hypnogenic role of adenosine, J. Neurochem. 21:1019–1020.

    Article  PubMed  CAS  Google Scholar 

  • Hedner, T., Fredholm, B. B., Hedner, J., Holmgren, M., Nordberg, G., and Sollevi, A., 1986, Intrathecally administered 2-dichloroadenosine produces spinal analgesia in the rat, Pfluegers Arch. 407:543.

    Google Scholar 

  • Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082–1090.

    Article  PubMed  CAS  Google Scholar 

  • Holton, F. A., and Holton, P., 1954, The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings, J. Physiol. (London) 126:124–140.

    CAS  Google Scholar 

  • Holton, P., 1959, The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves, J. Physiol. (London) 145:494–504.

    CAS  Google Scholar 

  • Iwama, K., and Jasper, H. H., 1957, The action of gamma aminobutyric acid upon cortical electrical activity in the cat, J. Physiol. (London) 138:365–380.

    CAS  Google Scholar 

  • Jasper, H. H., 1949, Diffuse projection systems: The integrative action of the thalamic reticular system, Electroencephalogr. Clin. Neurophysiol. 1:405–420.

    PubMed  CAS  Google Scholar 

  • Jiang, Z. G., Chelack, B. J., and Phillis, J. W., 1980, Effects of morphine and caffeine on adenosine release from rat cerebral cortex: Is caffeine a morphine antagonist? Can. J. Physiol. Pharmacol. 58:1513–1515.

    PubMed  CAS  Google Scholar 

  • Katims, J. J., Annau, J., and Snyder, S. H., 1983, Interactions in the behavioral effects of methylxanthines and adenosine derivatives, J. Pharmacol. Exp. Ther. 227:167–173.

    PubMed  CAS  Google Scholar 

  • Klein, M., and Kandel, E. R., 1978, Presynaptic modulation of voltage-dependent Ca+ + current: Mechanism for behavioral sensitization in Aplysia californica, Proc. Natl. Acad. Sei. USA 75:3512–3516.

    Article  CAS  Google Scholar 

  • Kocsis, J. D., Eng. D. L., and Bhisitkul, R. B., 1984, Adenosine selectively blocks parallel-fiber-mediated synaptic potentials in rat cerebellar cortex, Proc. Natl. Acad. Sci. USA 81:6531–6534.

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz, H. W.(ed.), 1976, Opiates and Endogenous Opioid Peptides, North-Holland, Amsterdam.

    Google Scholar 

  • Kostopoulos, G. K., and Phillis, J. W., 1977, Purinergic depression of neurons in different areas of the rat brain, Exp. Neurol. 55:719–724.

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos, G. K., Limacher, J. J., and Phillis, J. W., 1975, Action of various adenine derivatives on cerebellar Purkinje cells, Brain Res. 88:162–165.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg, G. W., and Hussain, S. T., 1984, Cytochemical localization of 5′-nucleotidase activity, Neuroscience 11:857–866.

    Article  PubMed  CAS  Google Scholar 

  • Krnjević, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.

    Google Scholar 

  • Kuhn, T. S., 1970, The Structure of Scientific Revolutions, 2nd ed., University of Chicago Press, Chicago.

    Google Scholar 

  • Kuroda, Y., 1983, Neuronal plasticity and adenosine derivatives in mammalian brain, in: Physiology and Pharmacology of Adenosine Derivatives (J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui, eds.), Raven Press, New York, pp. 245–256.

    Google Scholar 

  • Kuroda, Y., and Mcllwain, H., 1973, Subcellular localization of [14C] adenine derivatives newly formed in cerebral tissues and the effects of electrical excitation, J. Neurochem- 21:889–900.

    Article  CAS  Google Scholar 

  • Lader, M., 1983, Biological differentiation of anxiety, arousal and stress, in: The Biology of Anxiety (R. J. Mathew, ed.), Brunner/Mazel, New York, pp. 11–22.

    Google Scholar 

  • Lee, K. S., and Reddington, M., 1986, l,3-Dipropyl-8-cyclopentylxanthine (DPCPX) inhibition of [3H] N-eth-ylcarboxamidoadenosine (NECA) binding allows the visualization of putative non-A! adenosine receptors, Brain Res. 368:394–398.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., and Tetzlaff, W., 1985, Rapid down regulation of hippocampal adenosine receptors following brief anoxia, Soc. Neurosci. Abstr. 15:19.

    Google Scholar 

  • Lee, K. S., Schubert, P., and Heineman, U., 1984, The anticonvulsive action of adenosine: A postsynaptic dendritic action by a possible endogenous anticonvulsant, Brain Res. 321:160–164.

    Article  PubMed  CAS  Google Scholar 

  • Legrand du Saulle, H., 1878, Étude CUnique sur la Peur des Espaces (Agoraphobie des Allemands) Nevrose emotive, Delahaye, Paris.

    Google Scholar 

  • Lekic, D., 1977, Presynaptic depression of synaptic response of Renshaw cells by adenosine 5′monophosphate, Can. J. Physiol. Pharmacol. 55:1391–1393.

    Article  PubMed  CAS  Google Scholar 

  • Lesch, M., and Nyhan, W. L., 1964, A familial disorder of uric acid metabolism and CNS functions, Am. J. Med. 36:561–570.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, E., 1976, Endogenously released adenine derivatives: A possible role in epileptogenesis, Arch. Neurol. 23:393.

    Google Scholar 

  • Lewis, E., Patel, J., Moon Edley, S., and Marangos, P. J., 1981, Autoradiographic visualization of rat brain adenosine receptors using N6 cyclohexyl [3H] adenosine, Eur. J. Pharmacol. 73:109–110.

    Article  PubMed  CAS  Google Scholar 

  • Lohse, M. S., Klotz, K. N., Jakobs, K. H., and Schwabe, U., 1985, Barbiturates are selective antagonists at A1 adenosine receptors, J. Neurochem. 45:1761–1770.

    Article  PubMed  CAS  Google Scholar 

  • Londos, C, Cooper, D. M. F., and Wolff, J., 1980, Subclasses of external adenosine receptors, Proc. Natl. Acad. Sei. USA 77:2551–2554.

    Article  CAS  Google Scholar 

  • Mcllwain, H., 1985, The endogenously formed adenosine of the brain: Its status as a regulatory signal appraised in relation to actions of homocysteine, in: Purines, Pharmacology and Physiological Roles (T. W. Stone, ed.), Macmillan Co., New York, pp. 215–221.

    Google Scholar 

  • Mah, H. D., and Daly, J. W., 1976, Adenosine-dependent formation of cyclic AMP in brain slices, Pharmacol. Res. Commun. 8:65–79.

    Article  PubMed  CAS  Google Scholar 

  • Maitre, M., Ciesielski, Z., Lehmann, A., Kempf, E., and Mandel, P., 1974, Protective effect of adenosine and nicotinamide against audiogenic seizure, Biochem. Pharmacol. 23:2807–2816.

    Article  PubMed  CAS  Google Scholar 

  • Major, P. P., Agarwal, R. P., and Kufe, D. W., 1981, Deoxycoformycin: Neurological toxicity, Cancer Chemother. Pharmacol. 5:193–196.

    CAS  Google Scholar 

  • Mandel, P., 1971, Free nucleotides, in: Handbook ofNeurochemistry, Vol. 5 (A. Lajtha, ed.), Plenum Press, New York, pp. 249–282.

    Google Scholar 

  • Marangos, P. J., and Boulenger, J. P., 1985, Basic and clinical aspects of adenosinergic neuromodulation, Neurosci. Biobehav. Rev. 9:421–430.

    Article  PubMed  CAS  Google Scholar 

  • Marangos, P. J., Patel, J., and Stivers, J., 1982, Ontogeny of adenosine binding sites in rat forebrain and cerebellum, J. Neurochem. 39:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Marangos, P. J., Boulenger, J. P., and Patel, J., 1984, Effects of chronic caffeine on brain adenosine receptors: Anatomical and autogenic studies, Life Sci. 34:899–907.

    Article  PubMed  CAS  Google Scholar 

  • Marley, E., and Nistico, G., 1972, Effects of catecholamines and adenosine derivatives given into the brain of fowls, Br. J. Pharmacol. 36:619–636.

    Google Scholar 

  • Meldrum, B. S., and Nilsson, B., 1976, Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rat by bicuculline, Brain 99:523–542.

    Article  PubMed  CAS  Google Scholar 

  • Murray, T. F., and Cheney, D. L., 1982, Neuronal location of N6-cyclohexyl [3H] adenosine binding sites in rat and guinea-pig brain, Neuropharmacology 21:575–580.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, H., Mimori, Y., Nakamura, S., and Kameyama, M., 1984, Regional and subcellular distribution in mammalian brain of enzymes producing adenosine, J. Neurochem. 42:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. I., Labella, L. A., and Buss, M., 1984, Immunohistochemistry of adenosine deaminase: Implications for adenosine neurotransmission, Science 224:166–168.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. I., Geiger, J. D., and Daddova, P. E., 1985, Adenosine uptake sites in rat brain: Identification using [3H] nitrobenzylthioinosine and co-localization, Neurosci. Lett. 55:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Okada, Y., and Saito, M., 1979, Inhibitory action of adenosine, 5-HT (serotonin) and GABA (7-aminobutyric acid) on the postsynaptic potential (PSP) of slices from olfactory cortex and superior colliculus in correlation to the level of cyclic AMP, Brain Res. 160:368–371.

    Article  PubMed  CAS  Google Scholar 

  • Panther, L. A., Baumbach, G. L., Bigner, D. D., Piegors, D., Groothuis, D. R., and Heistad, D. D., 1985, Vasoactive drugs produce selective changes in flow to experimental brain tumors, Ann. Neurol. 18:712–715.

    Article  PubMed  CAS  Google Scholar 

  • Penfield, W. G., and Jasper, H. H. (eds.), 1954, Epilepsy and the Functional Anatomy of the Human Brain, Little, Brown, Boston.

    Google Scholar 

  • Phillis, J. W., 1970, The Pharmacology of Synapses, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Phillis, J. W., 1977, The role of cyclic nucleotides in the CNS, Can. J. Neurol. Sci. 4:151–195.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., 1979, Diazepam potentiation of purinergic depression on central neurons, Can. J. Physiol. Pharmacol. 57:432–435.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., 1985, The pharmacology of purines in the CNS: Interaction with psychoactive agents, in: Purines, Pharmacology and Physiological Roles (T. W. Stone, ed.), Macmillan Co., New York, pp. 45–55.

    Google Scholar 

  • Phillis, J. W., and Kostopoulos, G. K., 1975, Adenosine as a putative transmitter in the cerebral cortex: Studies with potentiation and antagonists, Life Sci. 17:1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., and Wu, P. H., 1981, The role of adenosine and its nucleotides in central synaptic transmission, Prog. Neurobiol. 16:187–239.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., and Wu, P. H., 1982, The effect of various centrally active drugs on adenosine uptake by the central nervous system, Comp. Biochem. Physiol. 72C: 179–187.

    CAS  Google Scholar 

  • Phillis, J. W., Kostopoulos, G. K., and Limacher, J. J., 1974, Depression of corticospinal cells by various purines and pyrimidines, Can. J. Physiol. Pharmacol. 52:1226–1229.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R., 1979a, Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex, Can. J. Physiol. Pharmacol. 57:1289–1312.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Kostopoulos, G. K., Edstrom, J. P., and Ellis, S. W., 1979b, Role of adenosine and adenine nucleotides in central nervous function, in: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides (H. P. Baer and G. T. Drummond, eds.), Raven Press, New York, pp. 343–359.

    Google Scholar 

  • Phillis, J. W., Barraco, R. A., Delong, R. E., and Washington, D. O., 1986, Behavioral characteristics of centrally administered adenosine analogs, Pharmacol. Biochem. Behav. 24:261–270.

    Article  Google Scholar 

  • Plum, F., Posner, J. B., and Troy, B., 1968, Cerebral metabolic and circulatory responses to induced convulsions in animals, Arch. Neurol. 18:1–13.

    PubMed  CAS  Google Scholar 

  • Porter, N. M., Clark, F. M., Green, R. D., and Radulovacki, M., 1985, Effects of chronic intracerebroventricular infusion of adenosine agonists and deoxyformycin on brain adenosine and receptors and sleep in the rat, Soc. Neurosci. Abstr. 11:576.

    Google Scholar 

  • Post, C, 1984, Antinociceptive effects in mice after intrathecal injection of 5′-N-ethylcarboxamide adenosine, Neurosci. Lett. 51:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Proctor, W. R., and Dunwiddie, T. V., 1984, Behavioral sensitivity to purinergic drugs parallels ethanol sensitivity in selectively bred mice, Science 224:519–521.

    Article  PubMed  CAS  Google Scholar 

  • Psychoyos, S., Ford, C. J., and Phillips, M. A., 1982, Inhibition by etazolate (SQ20009) and cartazolate (SQ65396) of adenosine-stimulated [3H] cAMP formation in [2–3H] adenosine prelabeled vesicles prepared from guinea pig cerebral cortex, Biochem. Pharmacol. 31:1441–1442.

    Article  PubMed  CAS  Google Scholar 

  • Pull, I., and Mcllwain, H., 1973, Output of [14C] adenine nucleotides and their derivatives from cerebral tissues, Biochem. J. 136:893–901.

    PubMed  CAS  Google Scholar 

  • Radulovacki, M., Virus, R. M., Djuricic-Nedelson, M., and Green, R. D., 1984, Adenosine analogs and sleep in rats, J. Pharmacol. Exp. Ther. 228:268–274.

    PubMed  CAS  Google Scholar 

  • Rall, T. W., 1985, Central nervous system stimulants: The methylxanthines, in: The Pharmacological Basis of Therapeutics, 7th ed. (A. G. Gilman, L. S. Goodman, T. W. Rail, and F. Murod, eds.), Macmillan Co., New York, pp. 589–603.

    Google Scholar 

  • Reddington, M., Lee, K. S., Schubert, P., and Kreutzberg, G. W., 1985, Characterization of adenosine receptors in the hippocampus and other regions of rat brain, in: Purines, Pharmacology and Physiological Roles (T. W. Stone, ed.), Macmillan Co., New York, pp. 17–26.

    Google Scholar 

  • Sattin, A., and Rail, T. W., 1970, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices, Mol. Pharmacol. 6:13–23.

    PubMed  CAS  Google Scholar 

  • Schmitt, F. O., 1984, Molecular regulation of brain function: A new view, Neuroscience 13:991–1001.

    Article  PubMed  CAS  Google Scholar 

  • Scholfield, C. N., 1978, Depression of evoked potentials in brain slices by adenosine compounds, Br. J. Pharmacol. 63:239–244.

    PubMed  CAS  Google Scholar 

  • Schrader, J., Wahl, M., Kuschinsky, W., and Kreutzberg, G. N., 1980, Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizures, Pfluegers Arch. 387:245–251.

    Article  CAS  Google Scholar 

  • Schubert, P., Komp, W., and Kreutzberg, G. W., 1979, Correlation of 5′nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus, Brain Res. 168:419–424.

    Article  PubMed  CAS  Google Scholar 

  • Seegmiller, J. E., 1979, Abnormalities of purine metabolism in human immunodeficiency diseases, in: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides (H. P. Baer and G. I. Drummond, eds.), Raven Press, New York, pp. 395–408.

    Google Scholar 

  • Senba, E., Daddona, R. E., Watanabe, T., Wu, J. Y., and Nagy, J. I., 1985, Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons in the rat, J. Neurosci. 5:3393–3402.

    PubMed  CAS  Google Scholar 

  • Siesjo, B. K., 1984, Central circulation and metabolism, J. Neurosurg. 60:883–908.

    Article  PubMed  CAS  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1969, Cyclic adenosine monophosphate: Possible mediator for norepinephrine effects on cerebellar Purkinje cells, Science 165:1018–1020.

    Article  PubMed  CAS  Google Scholar 

  • Snell, C. R., Richards, G. D., Candy, J. M., and Snell, P. H., 1985, Nicotinamide adenine dinucleotide as an endogenous modulator of synaptic activity, in: Purines, Pharmacology and Physiological Roles (T. W. Stone, ed.), Macmillan Co., New York, p. 272.

    Google Scholar 

  • Snyder, S. H., 1985, Adenosine as a neuromodulator, Annu. Rev. Neurosci. 8:103–124.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W., 1981, Adenosine receptors and behavioral actions of methylxanthines, Proc. Natl. Acad. Sei. USA 78:3260–3264.

    Article  CAS  Google Scholar 

  • Stefanovich, J., Rudolphi, K., and Schubert, P., 1986, Adenosine: Receptors and Modulation of Cell Function, IRL Press, Oxford.

    Google Scholar 

  • Sterman, M. B., Shouse, M. N., and Passouant, P., 1982, Sleep and Epilepsy, Academic Press, New York.

    Google Scholar 

  • Stone, T. W., 1981, Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system, Neuroscience 6:523–555.

    Article  PubMed  CAS  Google Scholar 

  • Stone, T. W. (ed.), 1985, Purines, Pharmacology and Physiological Roles, Macmillan Co., New York.

    Google Scholar 

  • Su, C, 1983, Purinergic neurotransmission and neuromodulation, Annu. Rev. Pharmacol. Toxicol. 23:397–411.

    Article  PubMed  CAS  Google Scholar 

  • Sulakhe, P. V., and Phillis, J. W., 1975, The release of [3H] adenosine and its derivatives from cat sensorimotor cortex, Life Sci. 17:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Swazey, J. P., and Worden, F. G., 1975, On the nature of research in neuroscience, in: The Neurosciences: Paths of Discovery(F. G. Worden, J. P. Swazey, and G. Adelman, eds.), MIT Press, Cambridge, Mass., pp. 569–587.

    Google Scholar 

  • Tetzlaff, W., Schubert, P., and Kreutzberg, G. W., 1987, Synaptic and extrasynaptic localization of adenosine binding sites in the rat hippocampus, Neuroscience 21(3):869–875.

    Article  PubMed  CAS  Google Scholar 

  • Ushijima, I., Mizuki, Y., and Yamada, M., 1985, Development of stress-induced gastric lesions involves central adenosine Arreceptor stimulation, Brain Res. 339:351–355.

    Article  PubMed  CAS  Google Scholar 

  • van Calker, D., Muller, M., and Hamprecht, B., 1979, Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells, J. Neurochem. 33:999–1005.

    Article  PubMed  Google Scholar 

  • Vapaatalo, H., Onken, D., Neuvonen, P., and Westerman, E., 1975, Stereospecificity in some central and circulatory effects of phenylisopropyl adenosine, Arzneim. Forsch. 25:407–410.

    CAS  Google Scholar 

  • Virus, R. M., Baglajewski, T., and Radulovacki, M., 1984, Circadian variation of [3H] N6-(l-phenylisopropyl) adenosine binding in rat brain, Neurosci. Lett. 46:219–222.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, J. J. (ed.), 1981, Neurology of the Newborn, Saunders, Philadelphia.

    Google Scholar 

  • Wahl, M., and Kuschinsky, W., 1976, The dilatory action of adenosine in pial arteries of cats and its inhibition by theophylline, Pfluegers Arch. 362:55–59.

    Article  CAS  Google Scholar 

  • Walker, J. E., Lewin, E., and Moffitt, B. C., 1973, Production of epileptiform discharges by application of agents which increase cyclic AMP levels in rat cortex, in: Epilepsy, Proceedings of the Hans Berger Centenary Symposium, Churchill Livingstone, Edinburgh, pp. 30–36.

    Google Scholar 

  • Werman, R., 1966, Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol. 18:745–766.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M., 1983, Mammalian central adenosine receptors, in: Handbook of Neurochemistry, Vol. 6 (A. Lajtha, ed.), Plenum Press, New York, pp. 1–26.

    Google Scholar 

  • Williams, M., 1984, Adenosine—A selective neuromodulator in the mammalian CNS? Trends Neurosci. 7:164–168.

    Article  CAS  Google Scholar 

  • Winn, H. R., 1985, Metabolic regulation of cerebral blood flow by adenosine, in: Purines, Pharmacology and Physiological Roles (T. W. Stone, ed.), Macmillan Co., New York, pp. 131–141.

    Google Scholar 

  • Winn, H. R., Welsh, J. E., Rubio, R., and Berne, R. M., 1978, Brain adenosine levels during bicuculline seizures, Physiologist 21:392–433.

    Google Scholar 

  • Winn, H. R., Norii, S., Weaver, D. P., Reed, J. C., Ngai, A. C., and Berne, R. M., 1983, Changes in brain adenosine concentration during hypoglycemia and posthypoxic hyperemia, J. Cereb. Blood Flow Metab. 3(Suppl. l):449–450.

    Google Scholar 

  • Wojcik, W. J., and Neff, N. H., 1982, Adenosine measurement by rapid HPLC-fluorometric method: Induced changes of adenosine content in regions of cat brain, J. Neurochem. 39:280–282.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik, W. J., and Neff, N. H., 1983a, Location of adenosine release and adenosine A2 receptors to rat striatal neurons, Life Sei. 33:755–763.

    Article  CAS  Google Scholar 

  • Wojcik, W. J., and Neff, N. H., 1983b, A! receptors are associated with cerebellar granule cells, J. Neurochem. 41:759–763.

    Article  PubMed  CAS  Google Scholar 

  • Yanik, G., Porter, N. M., and Radulovacki, M., 1985, Effects of REM sleep deprivation on adenosine A1 and A2 receptors in rat brain region, Neurosci. Abstr. p. 576.

    Google Scholar 

  • Yarbrough, G. G., and McGuffm-Clineschmidt, J. C., 1981, In vivo behavioral assessment of central nervous system purinergic receptors, Eur. J. Pharmacol. 76:137–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kostopoulos, G.K. (1988). Adenosine: A Molecule for Synaptic Homeostasis?. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics