Behavioral and Other Actions of Adenosine in the Central Nervous System

  • J. W. Phillis


In recent years it has become evident that the transmission process of central neurons is extraordinarily varied, as is the chemical vocabulary by which neurons communicate. There has been a considerable accumulation of evidence, primarily from histochemical studies, supporting the existence of transmitter-like molecules within certain neurons (Chan-Palay and Palay, 1984). However, the fact that a neuron contains more than one transmitter substance does not establish that each substance is being released as a transmitter (Phillis, 1984). It is possible that some neurons release more than one type of transmitter substance from the same terminal, with one of these serving as the primary transmitter and the others functioning, either pre- or postsynaptically, to modify or modulate the action, or further release, of the primary transmitter.


Locomotor Activity Adenosine Receptor Adenosine Deaminase Anticonvulsant Effect Spontaneous Locomotor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, T. E., and Joy, R. M., 1986, Modification of excitation and inhibition evoked in dentate gyrus by perforant path stimulation: Effects of aminophylline and kindling, Pharmacol. Biochem. Behav. 24:85–91.PubMedCrossRefGoogle Scholar
  2. Albertson, T. E., Stark, L. G., Joy, R. M. and Bowyer, J. F., 1983, Aminophylline and kindled seizures, Exp. Neurol. 81:703–713.PubMedCrossRefGoogle Scholar
  3. Ault, B., and Wang, C. M., 1986, Adenosine inhibits epileptiform activity arising in hippocampal area CA3, Br. J. Pharmacol. 87:695–703.PubMedGoogle Scholar
  4. Barraco, R. A., Aggarwal, A. K., Phillis, J. W., Moron, M. A., and Wu, P. H., 1984a, Dissociation of the locomotor and hypotensive effects of adenosine and analogues in the rat, Neurosci. Lett. 48:139–144.PubMedCrossRefGoogle Scholar
  5. Barraco, R. A., Swanson, T. H., Phillis, J. W., and Berman, R. F., 1984b, Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats, Neurosci. Lett. 46:317–322.PubMedCrossRefGoogle Scholar
  6. Barraco, R. A., Phillis, J. W., and Altman, H. J., 1985, Depressant effect of forskolin on spontaneous locomotor activity in mice, Gen. Pharmacol. 16:521–524.PubMedCrossRefGoogle Scholar
  7. Bennet, D. W., and Drury, A. N., 1931, Further observations relating to the physiological activity of adenine compounds, J. Physiol. (London) 72:288–320.Google Scholar
  8. Bickford, P. C., Fredholm, B. B., Dunwiddie, T. V., and Freedman, R., 1985, Inhibition of Purkinje cell firing by systemic administration by phenylisopropyladenosine: Effect of central noradrenaline depletion by DSP4, Life Sci. 37:289–297.PubMedCrossRefGoogle Scholar
  9. Buday, P. V., Carr, C. J., and Miya, T. S., 1961, A pharmacologic study of some nucleosides and nucleotides, J. Pharm. Pharmacol. 13:290–299.CrossRefGoogle Scholar
  10. Burley, E. S., and Ferrendelli, J. A., 1984, Regulatory effects of neurotransmitters on electroshock and pen¬tylenetetrazol seizures, Fed. Proc. 43:2521–2524.PubMedGoogle Scholar
  11. Buss, D. C., Routledge, P. A., and Watt, A. H., 1986, Intravenous adenosine stimulates respiration in conscious adult rabbits, Br. J. Pharmacol. 87:182P.Google Scholar
  12. Capogrossi, M. C., Francendese, A., and DiGirolamo, M., 1979, Suppression of food intake by adenosine and inosine, Am. J. Clin. Nutr. 32:1762–1768.PubMedGoogle Scholar
  13. Chan-Palay, V., and Palay, S. L., 1984, Coexistence of Neuroactive Substances in Neurons, Wiley, New York.Google Scholar
  14. Coffin, V. L., and Carney, J. M., 1983, Behavioral pharmacology of adenosine analogs, in: Physiology and Pharmacology of Adenosine Derivatives(J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui, eds.), Raven Press, New York, pp. 267–274.Google Scholar
  15. Coffin, V. L., Taylor, J. A., Phillis, J. W., Altman, H. J., and Barraco, R. A., 1984, Behavioral interaction of adenosine and methylxanthines in central purinergic systems, Neurosci. Lett. 47:91–98.PubMedCrossRefGoogle Scholar
  16. Davies, L. P., Baird-Lambert, J., Jamieson, D. D., and Spence, I., 1983, Studies on marine-derived analogs of adenosine, in: Physiology and Pharmacology of Adenosine Derivatives (J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui, eds.), Raven Press, New York, pp. 257–266.Google Scholar
  17. Deutsch, J. A., 1978, The stomach in food satiation and the regulation of appetite, Prog. Neurobiol. 10:135–153.PubMedCrossRefGoogle Scholar
  18. Dragunow, M., and Goddard, G. V., 1984, Adenosine modulation of amygdala kindling, Exp. Neurol. 84:654–665.PubMedCrossRefGoogle Scholar
  19. Dragunow, M., Goddard, G. V., and Laverty, R., 1985, Is adenosine an endogenous anticonvulsant? Epilepsia 26:480–487.PubMedCrossRefGoogle Scholar
  20. Dunwiddie, T. V., 1980, Endogenously released adenosine regulates excitability in the in vitro hippocampus, Epilepsia 21:541–548.PubMedCrossRefGoogle Scholar
  21. Dunwiddie, T. V., 1985, The physiological role of adenosine in the central nervous system, Int. Rev. Neurobiol. 27:63–139.PubMedCrossRefGoogle Scholar
  22. Dunwiddie, T. V., and Brodie, M. S., 1985, The effects of systemic and local administration of adenosine analogs on hippocampal evoked responses, Soc. Neurosci. Abstr. 11:576.Google Scholar
  23. Dunwiddie, T. V., and Worth, T., 1982, Sedative and anticonvulsant effects of adenosine analogs in mouse and rat, J. Pharmacol. Exp. Ther. 220:70–76.PubMedGoogle Scholar
  24. Dunwiddie, T. V., Hoffer, B., and Fredholm, B. B., 1981, Alkylxanthines elevate hippocampal excitability: Evidence for a role of endogenous adenosine, Naunyn-Schmiedebergs Arch. Pharmacol. 316:326–330.Google Scholar
  25. Dunwiddie, T. V., Lee, K. S., Fredholm, B. B., and Brodie, M. S., 1986, A comparison of systemic and local administration of adenosine analogs on hippocampal physiology, Pfluegers Arch. 402(Suppl. 1):S41.Google Scholar
  26. Eldridge, F. L., Millhorn, D. E., and Kiley, J. P., 1985, Antagonism by theophylline of respiratory inhibition induced by adenosine, J. Appl. Physiol. 59:1428–1433.PubMedGoogle Scholar
  27. Feldberg, W., and Sherwood, S. L., 1954, Injections of drugs into the lateral ventricle of the cat, J. Physiol. (London) 123:148–167.Google Scholar
  28. Glaum, S. R., Yanik, G. M., Porter, N. M., Chen, E. H., and Radulovacki, M., 1985, Effects of intracerebro- ventricular administration of forskolin and 2′,5′-dideoxyadenosine on sleep in rats, Fed. Proc. 11:749.Google Scholar
  29. Glowa, J. R., Sobel, E., Malaspina, S., and Dews, P. B., 1985, Behavioral effects of caffeine, (-)N-((R)-1- methyl-2-phenyl)-adenosine (PIA) and their combination in the mouse, Psychopharmacologia 87:421–424.CrossRefGoogle Scholar
  30. Green, H. N., and Stoner, H. B., 1950, Biological Actions of the Adenine Nucleotides, H. K. Lewis, London.Google Scholar
  31. Green, R. D., Proudfit, H. K., and Yeung, S.-M. H., 1982, Modulation of striatal dopaminergic function by local injection of 5′-N-ethylcarboxamide adenosine, Science 218:58–61.PubMedCrossRefGoogle Scholar
  32. Haulică, I., Ababei, L., Brănisteanu, D., and Topoliceanu, F., 1973, Preliminary data on the possible hypnogenic role of adenosine, J. Neurochem. 21:1019–1020.PubMedCrossRefGoogle Scholar
  33. Haulică, I., Nemtu, D., Petrescu, G. H., Frasin, M., Slătineanu, S., and Nacu, C, 1984, The influence of adenosine upon thermoalgesic sensitivity, Physiologie (Bucarest) 21:167–172.Google Scholar
  34. Hedner, T., Hedner, J., Wessberg, P., and Jonason, J., 1982, Regulation of breathing in the rat: Indications for a role of central adenosine mechanisms, Neurosci. Lett. 33:147–151.PubMedCrossRefGoogle Scholar
  35. Hedner, T., Fredholm, B. B., Hedner, J., Holmgren, M., Nordberg, G., and Sollevi, A., 1986, Intrathecally administered 2-chloroadenosine produces spinal analgesia in the rat, Pfluegers Arch. 407:S43.Google Scholar
  36. Heffner, T. G., Downs, D. A., Bristol, J. A., Bruns, R. F., Harrigan, S. E., Moos, W. H., Sledge, K. L., and Wiley, J. N., 1985, Antipsychotic-like effects of adenosine receptor agonists, Pharmacologist 27:293.Google Scholar
  37. Jonzon, B., Bergquist, A., Li, Y.-O., and Fredholm, B. B., 1986, Effects of adenosine and two stable adenosine analogs on blood pressure, heart rate and colonic temperature in the rat, Acta Physiol. Scand. 126:491–498.CrossRefGoogle Scholar
  38. Lagercrantz, H., Yamamoto, Y., Fredholm, B. B., Prabhakar, N. R., and Von Euler, C, 1984, Adenosine analogues depress ventilation in rabbit neonates—Theophylline stimulation of respiration via adenosine receptors, Pediatr. Res. 18:387–390.PubMedCrossRefGoogle Scholar
  39. Lee, K. S., Schubert, P., and Heinemann, U., 1984, The anticonvulsive action of adenosine: A postsynaptic, dendritic action by a possible endogenous anticonvulsant, Brain Res. 321:160–164.PubMedCrossRefGoogle Scholar
  40. Levine, A. S., and Morley, J. E., 1983, Effect of intraventricular adenosine on food intake in rats, Pharmacol. Biochem. Behav. 19:23–26.PubMedCrossRefGoogle Scholar
  41. McQueen, D. D., and Ribeiro, J. A., 1983, On the specificity and type of receptor involved in carotid body chemoreceptor activation by adenosine in the cat, Br. J. Pharmacol. 80:347–354.PubMedGoogle Scholar
  42. Maitre, M., Ciesielski, L., Lehmann, A., Kempf, E., and Mandel, P., 1974, Protective effects of adenosine and nicotinamide against audiogenic seizure, Biochem. Pharmacol. 23:2807–2816.PubMedCrossRefGoogle Scholar
  43. Marley, E., and Nistico, G., 1972, Effects of catecholamines and adenosine derivatives given into the brain of fowls, Br. J. Pharmacol. 46:619–636.PubMedGoogle Scholar
  44. Mehta, A. K., and Kulkarni, S. K., 1983, Effect of purinergic substances on rectal temperature in mice: Involvement of Pppurinoceptors, Arch. Int. Pharmacodyn. Ther. 264:180–186.PubMedGoogle Scholar
  45. Milhorn, D. E., Eldridge, F. L., Kiley, J. P., and Waldrop, T. G., 1984, Prolonged inhibition of respiration following acute hypoxia in glomectomized cats, Respir. Physiol. 41:87–103.CrossRefGoogle Scholar
  46. Monteiro, E. C., and Ribeiro, J. A., 1986, Adenosine and carotid body chemoreceptor regulation of respiration in the rat, Pfluegers Arch. 407:S56.Google Scholar
  47. Murray, T. F., Sylvester, D., Schultz, C. S., and Szot, P., 1985, Purinergic modulation of the seizure threshold for pentylenetetrazol in the rat, Neuropharmacology 24:761–766. Newby, A. C., 1984, Adenosine and the concept of ‘retaliatory metabolites’, Trends Biochem. Sei. 9:42–44.Google Scholar
  48. Phillis, J. W., 1982, Evidence for an A2-like adenosine receptor on cerebral cortical neurons, J. Pharm. Pharmacol. 34:453–454.PubMedCrossRefGoogle Scholar
  49. Phillis, J. W., 1984, A critical evaluation of the evidence for a single transmitter for each nerve cell, in: Coexistence ofNeuroactive Substances in Neurons (V. Chan-Palay and S. L. Palay, eds.), Wiley, New York, pp. 379–393.Google Scholar
  50. Phillis, J. W., and Kostopoulos, G. K., 1975, Adenosine as a putative transmitter in the cerebral cortex: Studies with potentiators and antagonists, Life Sci. 17:1085–1094. PubMedCrossRefGoogle Scholar
  51. Phillis, J. W., and Wu, P. H., 1981, The role of adenosine and its nucleotides in central synaptic transmission, Prog. Neurobiol. 16:187–239.PubMedCrossRefGoogle Scholar
  52. Phillis, J. W., and Wu, P. H., 1982a, The effect of various centrally active drugs on adenosine uptake by the central nervous system, Comp. Biochem. Physiol. 72C:179–187.Google Scholar
  53. Phillis, J. W., and Wu, P. H., 1982b, Adenosine mediates sedative action of various centrally active drugs, Med. Hypoth. 9:361–367.CrossRefGoogle Scholar
  54. Phillis, J. W., and Wu, P. H., 1983, Roles of adenosine and adenine nucleotides in the CNS, in: Physiology and Pharmacology of Adenosine Derivatives (J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu, and M. Ui, eds.), Raven Press, New York, pp. 219–236.Google Scholar
  55. Phillis, J. W., Barraco, R. A., DeLong, R. E., and Washington, D. O., 1986, Behavioral characteristics of centrally administered adenosine analogs, Pharmacol. Biochem. Behav. 24:261–270.CrossRefGoogle Scholar
  56. Post, C, 1984, Antinociceptive effects in mice after intrathecal injection of 5′-N-ethylcarboxamide adenosine, Neurosci. Lett. 51:325–330.PubMedCrossRefGoogle Scholar
  57. Radulovacki, M., Virus, R. M., Djuricic-Nedelson, M., and Green, R. D., 1984, Adenosine analogs and sleep in rats, J. Pharmacol. Exp. Ther. 228:268–274. PubMedGoogle Scholar
  58. Radulovacki, M., Virus, R. M., Rapoza, D., and Crane, R. A., 1985, A comparison of the dose response effects of pyrimidine ribonucleosides and adenosine on sleep in rats, Psychopharmacologia 87:136–140.CrossRefGoogle Scholar
  59. Rail, T. W., 1985, Central nervous system stimulants: The methylxanthines, in: The Pharmacological Basis of Therapeutics, 7th ed. (A. G. Gilman, L. S. Goodman, T. W. Rail, and F. Murad, eds.), Macmillan Co., New York, pp. 589–603.Google Scholar
  60. Rosen, J. B., and Berman, R. F., 1985, Prolonged postictal depression in amygdala-kindled rats by the adenosine analog, l-phenylisopropyladenosine, Exp. Neurol. 90:549–557.PubMedCrossRefGoogle Scholar
  61. Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W., 1981, Adenosine receptors and behavioral actions of methylxanthines, Proc. Natl. Acad. Sci. USA 78:3260–3264.PubMedCrossRefGoogle Scholar
  62. Vapaatalo, H., Onken, D., Neuvonen, P., and Westerman, E., 1975, Stereospecificity in some central and circulatory effects of phenylisopropyladenosine, Arzneim. Forsch. 25:407–410.Google Scholar
  63. Virus, R. M., Djuricic-Nedelson, M., Radulovacki, M., and Green, R. D., 1983, The effects of adenosine and 2′- deoxycoformycin on sleep and wakefulness in rats, Neuropharmacology 22:1401–1404.PubMedCrossRefGoogle Scholar
  64. Wachtel, H., 1983, Potential antidepressant activity of rolipram and other selective cyclic 3′,5′-monophosphate phosphodiesterase inhibitors, Neuropharmacology 22:267–272. PubMedCrossRefGoogle Scholar
  65. Wager-Srdar, S. A., Oken, M. M., Morley, J. E., and Levine, A. S., 1983, Thermoregulatory effects of purines and caffeine, Life Sci. 33:2431–2438.PubMedCrossRefGoogle Scholar
  66. Wagner, J. A., and Katz, R. J., 1983, Purinergic control of anxiety: Direct behavioral evidence in the rat, Neurosci. Lett. 43:333–337.PubMedCrossRefGoogle Scholar
  67. Watt, A. H., and Routledge, P. A., 1985, Adenosine stimulates respiration in man, Br. J. Clin. Pharmacol. 20:503–506.PubMedGoogle Scholar
  68. Wessberg, P., Hedner, J., Hedner, T., Persson, B., and Jonason, J., 1985, Adenosine mechanism in the regulation of breathing in the rat, Eur. J. Pharmacol. 106:59–67. CrossRefGoogle Scholar
  69. White, T. D., 1985, Release of ATP from central and peripheral nerve terminals, in: Purines: Pharmacology and Physiological Roles(T. W. Stone, ed.), Macmillan Co., New York, pp. 95–105.Google Scholar
  70. Williams, M., 1984, Adenosine—A selective neuromodulator in the CNS, Trends Neurosci. 7:164–168.CrossRefGoogle Scholar
  71. Wu, P. H., and Phillis, J. W., 1984, Uptake by central nervous tissues as a mechanism for the regulation of extracellular adenosine concentrations, Neurochem. Int. 6:613–632.PubMedCrossRefGoogle Scholar
  72. Wu, P. H., Phillis, J. W., and Thierry, D. L., 1982, Adenosine receptor agonists inhibit K+-evoked Ca2+ uptake by rat brain cortical synaptosomes, J. Neurochem. 39:700–708.PubMedCrossRefGoogle Scholar
  73. Yarbrough, G. G., and McGuffin-Clineschmidt, J. C., 1981, In vivo behavioral assessment of central nervous system purinergic receptors, Eur. J. Pharmacol. 76:137–144.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. W. Phillis
    • 1
  1. 1.Department of Physiology, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations