Skip to main content

Cerebrocortical Neurons Containing DARPP-32, a Dopamine- and Adenosine 3′:5′-Monophosphate-Regulated Phosphoprotein

  • Chapter

Abstract

Many of the biological effects of neuronal activity are mediated by the sequential activation of first, second, third (etc.) messengers (for review, see Nestler and Greengard, 1984). First mes-sengers, such as neurotransmitters and neurohormones, work through second messengers such as cAMP, cGMP, and calcium to activate protein kinases that in turn phosphorylate third messenger phosphoproteins. The final messengers in this cascade are the effector molecules that directly alter cell metabolism and/or physiology. DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of molecular weight 32,000) is a third messenger phosphoprotein in this cascade. It is regulated by the first messenger dopamine (DA) and by the second messenger cAMP. The possibility exists that other first messengers that increase intracellular cAMP in DARPP-32-containing neurons may also regulate DARPP-32 phosphorylation. In this paper, neurons in the cerebral cortex that contain DARPP-32 are examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaudet, A., and Descarries, L., 1984, Fine structure of monoamine axon terminals in cerebral cortex, in: Monoamine Innervation of the Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 77–93.

    Google Scholar 

  • Berger, B., Verney, C, Alvarez, C, Vigney, A., and Helle, K. B., 1985, New dopaminergic terminal fields in the motor, visual (area 18b) and retrosplenial cortex in young and adult rat: Immunocytochemical and catecholamine histochemical analyses, Neuroscience 15:983–998.

    Article  PubMed  CAS  Google Scholar 

  • Bunney, B. S., and Chiodo, L. A., 1984, Mesocortical dopamine systems: Further electrophysiological and pharmacological characteristics, in: Monoamine Innervation of the Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 263–277.

    Google Scholar 

  • Carlsson, A., 1959, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol. Rev. 11:490–493.

    PubMed  CAS  Google Scholar 

  • Cross, A. J., and Waddington, J. L., 1981, Kainic acid lesions dissociate [3H] spiperone and [3H] cis-flupenthixol binding sites in rat striatum, Eur. J. Pharmacol. 71:327–332.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, T. M., Gehlert, D. R., Yamamura, H. I., Barnett, A., and Wamsley, J. K., 1985, D-l dopamine receptors in the rat brain: Autoradiographic localization using [3H]SCH 23390, Eur. J. Pharmacol. 108:323–325.

    Article  PubMed  CAS  Google Scholar 

  • Descarries, L., Lemay, B., Doucet, G., and Berger, B., 1986, Regional and laminar density of the dopamine innervation in adult rat cerebral cortex, Neuroscience 21:807–824.

    Article  Google Scholar 

  • Divac, I., Lindvall, O., Björklund, A., and Passingham, R. E., 1975, Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species, J. Comp. Neurol. 180:59–72.

    Article  Google Scholar 

  • Dolphin, A., Hamont, M., and Bockaert, J., 1979, The resolution of dopamine and B-l- and B-2-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus and cerebral cortex, Brain Res. 179:305–317.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings, H. C., Jr., and Greengard, P., 1986, DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein: Regional, tissue and phylogenetic distribution, J. Neurosci. 6:1469–1481.

    PubMed  CAS  Google Scholar 

  • Hemmings, H. C., Jr., Nairn, A. C., Aswad, D. W., and Greengard, P., 1984a, DARPP-32, a dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus, J. Neurosci. 4:99–110.

    CAS  Google Scholar 

  • Hemmings, H. C., Jr., Greengard, P., Lim Tung, H. Y., and Cohen, P., 1984b, DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1, Nature 310:503–508.

    Article  CAS  Google Scholar 

  • Herkenham, M., 1980, Laminar organization of the thalamic projections to the rat neocortex, Science 207:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Ingebristen, T. S., Foulkes, J. G., and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. 4. Glucogen metabolism, Eur. J. Biochem. 132:263–274.

    Article  Google Scholar 

  • Jasper, H. H., 1981, Problems of relating cellular or modular specificity to cognitive functions: Importance of state-dependent reactions, in: The Organization of the Cerebral Cortex: Proceeding of a Neurosciences Research Program Colloquium(F. O. Schmitt, F. G. Worden, G. Edelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 375–393.

    Google Scholar 

  • Kakiuchi, S., and Rail, T. W., 1968, Studies on adenosine 3′5′-phosphate in rabbit cerebral cortex, Mol. Pharmacol. 4:379–388.

    PubMed  CAS  Google Scholar 

  • Katz, L. C., Burkhalter, A., and Dreyer, W. W., 1984, Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex, Nature 310:498–500.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.

    Article  PubMed  CAS  Google Scholar 

  • King, M. M., Huang, C. Y., Chock, P. B., Nairn, A. C., Hemmings, H. C., Jr., Chan, K.-F. J., and Greengard, P., 1984, Mammalian brain phosphoproteins as substrates for calcineurin, J. Biol. Chem. 259:8080–8083.

    PubMed  CAS  Google Scholar 

  • Lewis, M. S., Molliver, M. E., Morrison, J. H., and Lidov, H. G. W., 1979, Complementarity of dopaminergic and noradrenergic innervation in anterior cingulate cortex of rat, Brain Res. 164:328–333.

    Article  PubMed  CAS  Google Scholar 

  • Lidov, H. G. W., Grzanna, R., and Molliver, M. E., 1980, Serotonin innervation of the cerebral cortex in the rat—An immunohistochemical analysis, Neuroscience 5:207–227.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., and Björklund, A., 1984, General organization of cortical monoamine systems, in: Monoamine Innervation of the Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Hasper, eds.), Liss, New York, pp. 9–40.

    Google Scholar 

  • McGeer, E. G., Innanen, V. T., and McGeer, P. L., 1976, Evidence on the cellular localization of adenyl cyclase in the neostriatum, Brain Res. 118:356–358.

    Article  PubMed  CAS  Google Scholar 

  • Murrin, L. C., Gale, K., and Kuhar, M. J., 1979, Autoradiographic localization of neuroleptic and dopamine receptors in the caudate putamen and substantia nigra: Effects of lesions, Eur. J. Pharmacol. 60:229–235.

    Article  PubMed  CAS  Google Scholar 

  • Nestier, E. J., and Greengard, P., 1984, Protein Phosphorylation in the Nervous System, Wiley, New York.

    Google Scholar 

  • Onali, P., Olinias, M. C., and Gessa, G. L., 1984, Selective blockade of dopamine D-l receptors by SCH 23390 discloses striatal dopamine D-2 receptors mediating the inhibition of adenylate cyclase in rats, Eur. J. Pharmacol. 99:127.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet, C. C., Patrick, R. L., and Ebner, F. F., 1985, The projection of three extrathalamic cell groups to the cerebral cortex of the turtle Pseudemys, J. Comp. Neurol. 237:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet, C. C., Miller, P. E., Hemmings, H. C., Jr., Walaas, S. I., and Greengard, P., 1984, DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization, J. Neurosci. 4:114–124.

    Google Scholar 

  • Reader, T. A., Ferron, A., Descarries, L., and Jasper, H. H., 1979a, Modulating role for biogenic amines in the cerebral cortex: Microiontophoretic studies, Brain Res. 160:217–229.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A., Masse, P., and DeChamplain, J., 1979b, The intracortical distribution of norepinephrine, dopamine, and serotonin in the cerebral cortex of the cat, Brain Res. 177:499–513.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., and Coyle, J. T., 1977. Striatal lesions with kainic acid: Neurochemical characteristics, Brain Res. 127:235–249.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Creese, I., Coyle, J. T., and Snyder, S. H., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature 271:766–768.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, A. A., Ingebristen, T. S., Manalan, A., Klee, C. B., and Cohen, P., 1982, Discovery of a calcium and calmodulin-dependent protein phosphatase, FEBS Lett. 137:80–84.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, A. A., Ingebristen, T. S., and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. 5. Purification and properties of a calcium/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle, Eur. J. Biochem. 132:289–295.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A.-M., Tassin, J.-P., and Glowinski, J., 1984, Biochemical and electrophysiological studies of the mesocortical dopamine system, in: Monoamine Innervation of the Cerebral Cortex (L. Descarries, T. A. Reader, and H. H. Jasper, eds.), Liss, New York, pp. 233–261.

    Google Scholar 

  • Walaas, S. I., and Greengard, P., 1984, DARPP-32, a dopamine- and adenosine-3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution, J. Neurosci. 4:84–98.

    PubMed  CAS  Google Scholar 

  • Walaas, S. I., Aswad, D. W., and Greengard, P., 1983, A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions, Nature 301:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K. R., Hemmings, H. C., Jr., LoPresti, M. B., Königsberg, W. H., and Greengard, P., 1986, DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein, J. Biol. Chem. 261:1890–1903.

    PubMed  CAS  Google Scholar 

  • Zilles, K., 1985, The Cortex of the Rat: A Stereotaxic Atlas, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Ouimet, C.C. (1988). Cerebrocortical Neurons Containing DARPP-32, a Dopamine- and Adenosine 3′:5′-Monophosphate-Regulated Phosphoprotein. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics