Modulation of Neuronal Excitability by Acetylcholine

  • E. Wanke
  • A. Ferroni

Abstract

Several substances have been shown to act as neurotransmitters at a synaptic level. These include acetylcholine (ACh), noradrenaline (NA), adrenaline, and γ-aminobutyric acid (GABA) as well as a variety of other amino acids, amines, and peptides [such as serotonin (5-HT), glycine, glutamic acid, dopamine, and luteinizing hormone-releasing factor (LHRH)]. For a review see Krnjević (1974). These transmitters interact with specific chemoreceptor molecules, changing the permeability of the membrane to specific ions, and producing either an excitatory or an inhibitory synaptic potential. Each transmitter substance may control different specific permeability channels.

Keywords

Dopamine Serotonin Noradrenaline Adrenaline Acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R., Brown, D. A., and Constanti, A., 1982, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol. (London) 330:537–572.Google Scholar
  2. Belluzzi, O., Sacchi, O., and Wanke, E., 1985a, A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions, J. Physiol. (London) 358:91–108.Google Scholar
  3. Belluzzi, O., Sacchi, O., and Wanke, E., 1985b, Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage-clamp, J. Physiol. (London) 358:109–129.Google Scholar
  4. Brown, D. A., and Selyanko, A. A., 1985, Membrane currents underlying the cholinergic slow excitatory post synaptic potential in the rat sympathetic ganglion, J. Physiol. (London) 365:365–387.Google Scholar
  5. Carbone, E., and Lux, H. D., 1984, A low voltage activated Ca conductance in embryonic chick sensory neurones, Biophys. J. 46:413–418.PubMedCrossRefGoogle Scholar
  6. Carmeliet, E., and Mubagwa, K., 1986, Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres, J. Physiol. (London) 371:201–217.Google Scholar
  7. Cole, A. E., and Shinnick-Gallagher, P., 1984, Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance, Nature 307:270–271.PubMedCrossRefGoogle Scholar
  8. Dunlap, K., and Fischbach, G., 1978, Neurotransmitters decrease the calcium component of sensory neurone action potentials, Nature 276:837–839.PubMedCrossRefGoogle Scholar
  9. Dunlap, K., and Fischbach, G., 1981, Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones, J. Physiol. (London) 317:519–535.Google Scholar
  10. Egan, T., and North, R. A., 1986, Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor, Nature 319:405–407.PubMedCrossRefGoogle Scholar
  11. Fedulova, S. A., Kostyuk, P. G., and Veselovsky, N. S., 1985, Two types of calcium channels in the somatic membrane of newborn rat dorsal root ganglion neurones, J. Physiol. (London) 359:431–446.Google Scholar
  12. Fenwick, E., Marty, E., and Neher, E., 1982, Sodium and calcium channel in bovine chromaffin cells, J. Physiol. (London) 331:599–635.Google Scholar
  13. Galvan, M., and Adams, P. R., 1982, Control of calcium current in rat sympathetic neurons by norepinephrine, Brain Res. 244:135–144.PubMedCrossRefGoogle Scholar
  14. Giles, W. R., and Noble, S. J., 1976, Changes in membrane currents in bullfrog atrium produced by acetylcholine, J. Physiol. (London) 261:103–123.Google Scholar
  15. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36:577–579.PubMedCrossRefGoogle Scholar
  16. Hamill, P. O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  17. Hartzell, H. C., Kuffler, S. W., Stickgold, R., and Yoshikami, D., 1977, Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones, J. Physiol. (London) 271:817–846.Google Scholar
  18. Holz, G. G., Rane, S. G., and Dunlap, K., 1986, GTP-binding proteins mediate transmitter inhibition of voltage dependent calcium channels, Nature 319:670–672.PubMedCrossRefGoogle Scholar
  19. Horn, J. P., and Dodd, J., 1981, Monosynaptic muscarinic activation of K conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia, Nature 292:625–627.PubMedCrossRefGoogle Scholar
  20. Horn, J. P., and McAfee, D., 1980, Alpha-adrenergic inhibition of calcium dependent potentials in rat sympathetic neurones, J. Physiol. (London) 301:191–204.Google Scholar
  21. Krnjević, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.Google Scholar
  22. Kuffler, S. W., 1980, Slow synaptic responses in autonomic ganglia and the pursuit of a peptidergic transmitter, J. Exp. Biol. 89:257–286.PubMedGoogle Scholar
  23. Le Dourarin, N. M., Xue, Z. G., and Smith, J., 1985, In vivo and in vitro studies on the segregation of autonomic and sensory cell lineages, J. Physiol. (Paris) 80:255–261.Google Scholar
  24. Llinás, R., and Yarom, Y., 1981a, Electrophysiology of mammalian inferior olivary neurones in vitro: Different types of voltage dependent ionic conductance, J. Physiol. (London) 315:549–567.Google Scholar
  25. Llinás, R., and Yarom, Y., 1981b, Properties and distribution of ionic conductances generating electrorespon-siveness of mammalian inferior olivary neurones in vitro, J. Physiol. (London) 315:569–584.Google Scholar
  26. McCormick, D. A., and Prince, D., 1986, Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance, Nature 319:402–405.PubMedCrossRefGoogle Scholar
  27. Marchetti, C, Carbone, E., and Lux, H. D., 1986, Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick, Pfluegers Arch. 406:104–111.CrossRefGoogle Scholar
  28. Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity, Nature 316:440–442.PubMedCrossRefGoogle Scholar
  29. Pellman, T. C., and Carpenter, D. O., 1980, Serotonin induces a voltage sensitive calcium current in neurons of Aplysia californica, J. Neurophysiol. 44:423–439.Google Scholar
  30. Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Hathanson, N. M., and Hille, B., 1985, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature 317:536–538.PubMedCrossRefGoogle Scholar
  31. Rane, S. G., and Dunlap, K., 1986, C-kinase activator 1,2-oleoylacetylglycerol attenuates voltage dependent calcium current in sensory neurons, Proc. Natl. Acad. Sci. USA 83:184–188.PubMedCrossRefGoogle Scholar
  32. Reuter, H., and Scholz, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. (London) 264:49–62.Google Scholar
  33. Sakmann, B., Noma, A., and Trautwein, W., 1983, Acetylcholine activation of single muscarinic K channels in isolated pacemaker cells of mammalian heart, Nature 303:250–253.PubMedCrossRefGoogle Scholar
  34. Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozzan, T., and Meldolesi, J., 1986, A novel type of inhibition of voltage gated Ca2+ channels via muscarinic receptors in mammalian sympathetic neurons, Proc. Natl. Acad. Sci. USA 84:4313–4317.CrossRefGoogle Scholar
  35. Yatani, A., Tsuda, Y., Akaike, N., and Brown, A. M., 1982, Nanomolar concentrations of extracellular ATP activate membrane Ca channels in snail neurones, Nature 296:169–171.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • E. Wanke
    • 1
  • A. Ferroni
    • 1
  1. 1.1Department of General Physiology and BiochemistryUniversity of MilanMilanItaly

Personalised recommendations