Skip to main content

Modulation of Neuronal Excitability by Acetylcholine

  • Chapter

Abstract

Several substances have been shown to act as neurotransmitters at a synaptic level. These include acetylcholine (ACh), noradrenaline (NA), adrenaline, and γ-aminobutyric acid (GABA) as well as a variety of other amino acids, amines, and peptides [such as serotonin (5-HT), glycine, glutamic acid, dopamine, and luteinizing hormone-releasing factor (LHRH)]. For a review see Krnjević (1974). These transmitters interact with specific chemoreceptor molecules, changing the permeability of the membrane to specific ions, and producing either an excitatory or an inhibitory synaptic potential. Each transmitter substance may control different specific permeability channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol. (London) 330:537–572.

    CAS  Google Scholar 

  • Belluzzi, O., Sacchi, O., and Wanke, E., 1985a, A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions, J. Physiol. (London) 358:91–108.

    CAS  Google Scholar 

  • Belluzzi, O., Sacchi, O., and Wanke, E., 1985b, Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage-clamp, J. Physiol. (London) 358:109–129.

    CAS  Google Scholar 

  • Brown, D. A., and Selyanko, A. A., 1985, Membrane currents underlying the cholinergic slow excitatory post synaptic potential in the rat sympathetic ganglion, J. Physiol. (London) 365:365–387.

    CAS  Google Scholar 

  • Carbone, E., and Lux, H. D., 1984, A low voltage activated Ca conductance in embryonic chick sensory neurones, Biophys. J. 46:413–418.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, E., and Mubagwa, K., 1986, Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres, J. Physiol. (London) 371:201–217.

    CAS  Google Scholar 

  • Cole, A. E., and Shinnick-Gallagher, P., 1984, Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance, Nature 307:270–271.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, K., and Fischbach, G., 1978, Neurotransmitters decrease the calcium component of sensory neurone action potentials, Nature 276:837–839.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, K., and Fischbach, G., 1981, Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones, J. Physiol. (London) 317:519–535.

    CAS  Google Scholar 

  • Egan, T., and North, R. A., 1986, Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor, Nature 319:405–407.

    Article  PubMed  CAS  Google Scholar 

  • Fedulova, S. A., Kostyuk, P. G., and Veselovsky, N. S., 1985, Two types of calcium channels in the somatic membrane of newborn rat dorsal root ganglion neurones, J. Physiol. (London) 359:431–446.

    CAS  Google Scholar 

  • Fenwick, E., Marty, E., and Neher, E., 1982, Sodium and calcium channel in bovine chromaffin cells, J. Physiol. (London) 331:599–635.

    CAS  Google Scholar 

  • Galvan, M., and Adams, P. R., 1982, Control of calcium current in rat sympathetic neurons by norepinephrine, Brain Res. 244:135–144.

    Article  PubMed  CAS  Google Scholar 

  • Giles, W. R., and Noble, S. J., 1976, Changes in membrane currents in bullfrog atrium produced by acetylcholine, J. Physiol. (London) 261:103–123.

    CAS  Google Scholar 

  • Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36:577–579.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, P. O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Hartzell, H. C., Kuffler, S. W., Stickgold, R., and Yoshikami, D., 1977, Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones, J. Physiol. (London) 271:817–846.

    CAS  Google Scholar 

  • Holz, G. G., Rane, S. G., and Dunlap, K., 1986, GTP-binding proteins mediate transmitter inhibition of voltage dependent calcium channels, Nature 319:670–672.

    Article  PubMed  CAS  Google Scholar 

  • Horn, J. P., and Dodd, J., 1981, Monosynaptic muscarinic activation of K conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia, Nature 292:625–627.

    Article  PubMed  CAS  Google Scholar 

  • Horn, J. P., and McAfee, D., 1980, Alpha-adrenergic inhibition of calcium dependent potentials in rat sympathetic neurones, J. Physiol. (London) 301:191–204.

    CAS  Google Scholar 

  • Krnjević, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.

    Google Scholar 

  • Kuffler, S. W., 1980, Slow synaptic responses in autonomic ganglia and the pursuit of a peptidergic transmitter, J. Exp. Biol. 89:257–286.

    PubMed  CAS  Google Scholar 

  • Le Dourarin, N. M., Xue, Z. G., and Smith, J., 1985, In vivo and in vitro studies on the segregation of autonomic and sensory cell lineages, J. Physiol. (Paris) 80:255–261.

    Google Scholar 

  • Llinás, R., and Yarom, Y., 1981a, Electrophysiology of mammalian inferior olivary neurones in vitro: Different types of voltage dependent ionic conductance, J. Physiol. (London) 315:549–567.

    Google Scholar 

  • Llinás, R., and Yarom, Y., 1981b, Properties and distribution of ionic conductances generating electrorespon-siveness of mammalian inferior olivary neurones in vitro, J. Physiol. (London) 315:569–584.

    Google Scholar 

  • McCormick, D. A., and Prince, D., 1986, Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance, Nature 319:402–405.

    Article  PubMed  CAS  Google Scholar 

  • Marchetti, C, Carbone, E., and Lux, H. D., 1986, Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick, Pfluegers Arch. 406:104–111.

    Article  CAS  Google Scholar 

  • Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity, Nature 316:440–442.

    Article  PubMed  CAS  Google Scholar 

  • Pellman, T. C., and Carpenter, D. O., 1980, Serotonin induces a voltage sensitive calcium current in neurons of Aplysia californica, J. Neurophysiol. 44:423–439.

    Google Scholar 

  • Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Hathanson, N. M., and Hille, B., 1985, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature 317:536–538.

    Article  PubMed  CAS  Google Scholar 

  • Rane, S. G., and Dunlap, K., 1986, C-kinase activator 1,2-oleoylacetylglycerol attenuates voltage dependent calcium current in sensory neurons, Proc. Natl. Acad. Sci. USA 83:184–188.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, H., and Scholz, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. (London) 264:49–62.

    CAS  Google Scholar 

  • Sakmann, B., Noma, A., and Trautwein, W., 1983, Acetylcholine activation of single muscarinic K channels in isolated pacemaker cells of mammalian heart, Nature 303:250–253.

    Article  PubMed  CAS  Google Scholar 

  • Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozzan, T., and Meldolesi, J., 1986, A novel type of inhibition of voltage gated Ca2+ channels via muscarinic receptors in mammalian sympathetic neurons, Proc. Natl. Acad. Sci. USA 84:4313–4317.

    Article  Google Scholar 

  • Yatani, A., Tsuda, Y., Akaike, N., and Brown, A. M., 1982, Nanomolar concentrations of extracellular ATP activate membrane Ca channels in snail neurones, Nature 296:169–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wanke, E., Ferroni, A. (1988). Modulation of Neuronal Excitability by Acetylcholine. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics