Skip to main content

Rate-Limiting Steps in the Synthesis of GABA and Glutamate

  • Chapter
Neurotransmitters and Cortical Function

Abstract

The theme of this symposium, the relationship between the chemical activity of the nervous system and its electrical and behavioral functions, has been Dr. Jasper’s major interest during the past 20 years. I would like to contribute to this topic by presenting our recent data on the contrasting mechanisms involved in the control of the synthesis of the transmitters glutamate and GABA. This information can be useful in explaining processes involved in pathological changes in excitability and can suggest measures that are likely to rectify abnormalities in the release of amino acid transmitters. First, however, the rather extensive literature on the metabolic compartments of amino acid synthesis will be briefly reviewed, because the new observations reported here are based on concepts that have evolved during the past 25 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Ghani, A. S., Marton, M., and Dobkin, J., 1978, Studies on the transport of glutamine in vivo between the brain and blood in the resting state and during afferent electrical stimulation, J. Neurochem. 31:541–546.

    Article  PubMed  CAS  Google Scholar 

  • Albers, R. W., Koval, G., McKhann, G., and Ricks, D., 1961, Quantitative studies of in vivo γ-aminobutyrate metabolism, in: Regional Neurochemistry (S. S. Kety and J. Elkes, eds.), Pergamon Press, New York, pp. 340–347.

    Google Scholar 

  • Balazs, R., Machiyama, Y., Hammond, B. J., Julian, T., and Richter, D., 1970, The operation of the γ- aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro, Biochem. J. 116:445–467.

    PubMed  CAS  Google Scholar 

  • Balcar, V. J., and Johnston, G. A. R., 1975, High affinity uptake of glutamine in rat brain slices, J. Neurochem. 24:875–879.

    Article  PubMed  CAS  Google Scholar 

  • Beloff-Chain, A., Catanzaro, R., Chain, E. B., Massi, I., and Pocchiari, F., 1955, Fate of uniformly labelled 14C glucose in brain slices, Proc. R. Soc. London Ser. B 144:22–28.

    Article  CAS  Google Scholar 

  • Benjamin, A. M., 1981, Control of glutaminase activity in rat brain cortex in vitro: Influence of glutamate, phosphate, ammonium, calcium and hydrogen ions, Brain Res. 208:363–377.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, A. M., and Quastel, J. H., 1975, Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: A possible role of ammonia in brain function, J. Neurochem. 25:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Birman, J., and Meunier, F. M., 1985, Inactivation of acetylcholine release from Torpedo synaptosomes in response to prolonged depolarization, J. Physiol. (London) 368:293–307.

    CAS  Google Scholar 

  • Bradford, H. F., and Ward, H. K., 1976, On glutaminase activity in mammalian synaptosomes, Brain Res. 110:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H. F., Ward, H. K., and Thomas, A. J., 1978, Glutamine—A major substrate for nerve endings, J. Neurochem. 30:1453–1459.

    Article  PubMed  CAS  Google Scholar 

  • Cremer, J. E., 1964, Amino acid metabolism in rat brain studied with 14C–labelled glucose, J. Neurochem. 11:165–185.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, J. C., and Hamilton, P. B., 1966, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13:1179–1187.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, L. S., Law, D. H., Hagenfeldt, L., and Wahren, J., 1983, Nitrogen metabolism of the human brain, J. Neurochem. 41:1324–1328.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., 1984, Glutamate: A neurotransmitter in the brain, J. Neurochem. 42:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Gauchy, C., Kemel, M. L., Glowinski, J., and Besson, M. J., 1980, In vivo release of endogenously synthesized [3H]GABA from the cat substantia nigra and the pallido-entopeduncular nuclei, Brain Res. 193:129–141.

    Article  PubMed  CAS  Google Scholar 

  • Gold, B. I., and Roth, H. R., 1979, Glutamate decarboxylase activity in striatal slices: Characterization of the increase following depolarization, J. Neurochem. 32:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Gonda, O., and Quastel, J. H., 1966, Transport and metabolism of acetate in rat brain cortex in vitro, Biochem. J. 100:83–94.

    PubMed  CAS  Google Scholar 

  • Hamberger, A., Chiang, G., Nylen, E. S., Scheff, S. W., and Cotman, C. W., 1978, Stimulus evoked increase in the biosynthesis of putative neurotransmitter glutamate in the hippocampus, Brain Res. 143:549–555.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A. C., Chiang, G. H., Nylen, E. S., Scheff, S. W., and Cotman, C. W., 1979a, Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate, Brain Res. 168:513–530.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A., Chiang, G. H., Sandoval, E., and Cotman, C. W., 1979b, Glutamate as a CNS transmitter. II. Regulation of synthesis in the releasable pool, Brain Res. 168:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A., Jacobsson, I., Molin, S. O., Nystrom, B., Sandberg, M., and Ungerstedt, U., 1982, Metabolic and transmitter compartments for glutamate, in: Neurotransmitter Interaction and Compartmentation (H. F. Bradford, ed.), Plenum Press, New York, pp. 359–378.

    Google Scholar 

  • Hertz, L., 1979, Functional interaction between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters, Prog. Neurobiol. 13:277–323.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., Yu, A., Svenneby, G., Kvamme, E., Fosmark, H., and Schousboe, A., 1980, Absence of preferential glutamine uptake into neurons—An indication of a net transfer of TCA constituents from nerve endings to astrocytes, Neurosci. Lett. 16:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., Yu, A. C. H., Potter, R. L., Fisher, T. E., and Schousboe, A., 1983, Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures, in: Glutamine, Glutamate and GABA in the Central Nervous System (L. Hertz, E. Kvamme, E. G. McGeer, and A. Schousboe, eds.), Liss, New York, pp. 327–342.

    Google Scholar 

  • Jacobson, I., and Hamberger, A., 1984, Veratridine-induced release in vivo and in vitro of amino acids in the rabbit olfactory bulb, Brain Res. 299:103–112.

    Article  PubMed  CAS  Google Scholar 

  • Kemel, M. L., Gauchy, D., Glowinski, J., and Besson, J. M., 1979, Spontaneous and potassium-evoked release of 3H-GABA newly synthesized from 3H-glutamine in slices of rat substantia nigra, Life Sci. 24:1239–1250.

    Article  Google Scholar 

  • Kvamme, E., Svenneby, G., and Torgner, I. A., 1983, Calcium stimulation of glutamine hydrolysis in synaptosomes from rat brain, Neurochem. Res. 8:25–38.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, A., Isacsson, H., and Hamberger, A., 1983, Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus, J. Neurochem. 40:1314–1320.

    Article  PubMed  CAS  Google Scholar 

  • McGale, E. H. F., Pye, I. F., Stonier, C., Hutchinson, E. C., and Aber, G. M., 1977, Studies of the inter–relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals, J. Neurochem. 29:291–297.

    Article  PubMed  CAS  Google Scholar 

  • Machiyama, Y., Balazs, R., Hammond, B. J., Julian, T., and Richter, D., 1970, The metabolism of γ-aminobuty- rate and glucose in potassium ion-stimulated brain tissue in vitro, Biochem. J. 116:469–481.

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D., 1977, Glutamine synthetase: Glial localization in brain, Science 195:1356–1358.

    Article  PubMed  CAS  Google Scholar 

  • Molin, S. O., Nystrom, B., Haglid, K., and Hamberger, A., 1984, Glial contribution to amino acid content and metabolism of deafferented dentate gyrus, J. Neurosci. Res. 11:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Nachsen, D. A., and Blaustein, M. P., 1980, Some properties of potassium-stimulated calcium influx in presynaptic nerve endings, J. Gen. Physiol. 76:709–728.

    Article  Google Scholar 

  • Nachsen, D. A., and Blaustein, M. P., 1982, Influx of calcium, strontium, and barium in presynaptic nerve endings, J. Gen. Physiol. 79:1065–1087.

    Article  Google Scholar 

  • Nicklas, W. J., Nunez, R., Berl, S., and Duvoisin, R., 1979, Neuronal-glial contributions to transmitter amino acid metabolism: Studies with kainic acid-induced lesions of rat striatum, J. Neurochem. 33:839–844.

    Article  PubMed  CAS  Google Scholar 

  • Norenberg, M. D., and Martinez-Hernandez, A., 1979, Fine structural localization of glutamine synthetase in astrocytes in rat brain, Brain Res. 161:303–310.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T. L., Hansen, S., and Kennedy, J., 1975, CSF amino acids and plasma-CSF amino acid ratios in adults, J. Neurochem. 24:587–589.

    Article  PubMed  CAS  Google Scholar 

  • Porter, T. G., and Martin, D. L., 1984, Evidence for feedback regulation of glutamate decarboxylase by γ- aminobutyric acid, J. Neurochem. 43:1464–1467.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S. J., 1978a, The spontaneous and electrically evoked release, from slices of guinea-pig cerebral cortex, of endogenous amino acids labelled via metabolism of d-[U-14C]glucose, J. Neurochem. 31:177–186.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S. J., 1978b, Effects of tetrodotoxin, calcium and magnesium on the release of amino acids from slices of guinea-pig cerebral cortex, J. Neurochem. 31:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Ramaharobandro, N., Borg, J., Mandel, P., and Mark. J., 1982, Glutamine and glutamate transport in cultured neuronal and glial cells, Brain Res. 244:113–121.

    Article  PubMed  CAS  Google Scholar 

  • Reubi, J. C., 1980, Comparative study of the release of glutamate and GABA, newly synthesized from glutamine, in various regions of the central nervous system, Neuroscience 5:2145–2150.

    Article  PubMed  CAS  Google Scholar 

  • Reubi, J. C., Van den Berg, C., and Cuenod, M., 1978, Glutamine as precursor for the GABA and glutamate transmitter pools, Neurosci. Lett. 10:171–174.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E., 1981, Strategies for identifying sources and sites of formation of GABA–precursor or transmitter glutamate in brain, in: Glutamate as a Neurotransmitter (G. Di Chiara and G. L. Gessa, eds.), Raven Press, New York, pp. 91–102.

    Google Scholar 

  • Roberts, E., and Kuriyama, K., 1968, Biochemical-physiological correlations in studies of the γ-aminobutyric acid system, Brain Res. 8:1–35.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, J. D., and Tabakoff, B., 1984, Alteration of striatal glutamate release after glutamine synthetase inhibition, J. Neurochem. 42:1438–1446.

    Article  Google Scholar 

  • Schousboe, A., Larsson, O. M., Drejer, J., Krogsgaard-Larsen, P., and Hertz, P., 1983, Uptake and release processes for glutamine, glutamate and GABA in cultured neurons and astrocytes, in: Glutamine, Glutamate and GABA in the Central Nervous System (L. Hertz, E. Kvamme, E. G. McGeer, and A. Schousboe, eds.), Liss, New York, pp. 297–315.

    Google Scholar 

  • Seligman, B., Miller, L. P., Brockman, D. E., and Martin, D. L., 1978, Studies on the regulation of GABA synthesis: The interaction of adenine nucleotides and glutamate with brain glutamate decarboxylase, J. Neurochem. 30:371–376.

    Article  Google Scholar 

  • Shank, R. P., and Aprison, M. H., 1977, Glutamine uptake and metabolism by isolated toad brain: Evidence pertaining to its proposed role as a transmitter precursor, J. Neurochem. 28:1189–1196.

    Article  PubMed  CAS  Google Scholar 

  • Shank, R. P., and Aprison, M. H., 1981, Present status and significance of the glutamine cycle in neuronal tissue, Life Sci. 28:837–842.

    Article  PubMed  CAS  Google Scholar 

  • Shank, R. P., and Campbell, G. L., 1983a. Ornithine as a precursor of glutamate and GABA: Uptake and metabolism by neuronal and glial enriched cellular material, J. Neurosci. Res. 9:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Shank, R. P., and Campbell, G. L., 1983b, Metabolic precursors of glutamate and GABA, in: Glutamine, Glutamate and GABA in the Central Nervous System (L. Hertz, E. Kvamme, E. G. McGeer, and A. Schousboe, eds.), Liss, New York, pp. 355–369.

    Google Scholar 

  • Shank, R. P., and Campbell, G. L., 1984, Amino acid uptake, content and metabolism by neuronal and glial enriched fractions from mouse cerebellum, J. Neurosci. 4:58–69.

    PubMed  CAS  Google Scholar 

  • Suszkiw, J. B., and O’Leary, M. E., 1983, Temporal characteristics of potassium-stimulated acetylcholine release and inactivation of calcium influx in rat brain synaptosomes, J. Neurochem. 41:868–873.

    Article  PubMed  CAS  Google Scholar 

  • Szerb, J. C., 1982, Effect of nipecotic acid, a γ-aminobutyric acid transport inhibitor, on the turnover and release of γ-aminobutyric acid in rat cortical slices, J. Neurochem. 39:850–858.

    Article  PubMed  CAS  Google Scholar 

  • Szerb, J. C., 1984, Storage and release of endogenous and labelled GABA formed from [3H]glutamine and [14C]glucose in hippocampal slices: Effect of depolarization, Brain Res. 293:293–303.

    Article  PubMed  CAS  Google Scholar 

  • Szerb, J. C., and O’Regan, P. A., 1985, Effect of glutamine on glutamate release from hippocampal slices induced by high K+ or by electrical stimulation: Interaction with different Ca2+ concentrations, J. Neurochem. 44:1724–1731.

    Article  PubMed  CAS  Google Scholar 

  • Szerb, J. C., and O’Regan, P. A., 1986, Possible reasons for the failure of glutamine to influence GABA release in rat hippocampal slices: Effect of nipecotic acid and methionine sulfoximine, Neurochem. Int. 8:389–395.

    Article  PubMed  CAS  Google Scholar 

  • Tapia, R., and Gonzalez, R. M., 1978, Glutamine and glutamate as precursors of the releasable pool of GABA in brain cortex slices, Neurosci. Lett. 10:165–169.

    Article  PubMed  CAS  Google Scholar 

  • Tursky, T., Ruscak, M., Lassanova, M., and Ruscakova, D., 1979, [14C]amino acid formation from labelled glucose and/or acetate with experimentally elicited proliferation of astroglia: Correlation of biochemical and morphological changes, J. Neurochem. 33:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg, C. J., and Garfinkel, D., 1971, A simulation study of brain compartments: Metabolism of glutamate and related substances in mouse brain, Biochem. J. 123:211–218.

    PubMed  Google Scholar 

  • Van den Berg, C. J., Matheson, D. F., Ronda, G., Reijnierse, G. L. A., Blokhuis, G. G. D., Kroon, M. C., Clarke, D. D., and Garfinkel, D., 1975, A model of glutamate metabolism in brain: Biochemical analysis of a heterogeneous structure, in: Metabolic Compartmentation and Neurotransmission (S. Berl, D. D. Clarke, and D. Schneider, eds.), Plenum Press, New York, pp. 515–543.

    Google Scholar 

  • van Gelder, N. M., 1978, Taurine, the compartmentalized metabolism of glutamic acid, and the epilepsies, Can. J. Physiol. Pharmacol. 56:362–374.

    Article  PubMed  Google Scholar 

  • Vrba, R., Gaitonde, M. K., and Richter, D., 1962, The conversion of glucose carbon into protein in the brain and other organs of the rat, J. Neurochem. 9:465–475.

    Article  PubMed  CAS  Google Scholar 

  • Waelsch, H., 1962, In vivo compartments of glutamic acid metabolism in brain and liver, in: Amino Acid Pools, Distribution, Formation and Function of Free Amino Acids (J. T. Holden, ed.), Elsevier, Amsterdam, pp. 722–730.

    Google Scholar 

  • Wroblewski, J. T., Blaker, W. D., and Meek, J. L., 1985, Ornithine as a precursor of neurotransmitter glutamate: Effect of canaline on ornithine aminotransferase activity and glutamate content in the septum of rat brain, Brain Res. 329:161–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Szerb, J.C. (1988). Rate-Limiting Steps in the Synthesis of GABA and Glutamate. In: Avoli, M., Reader, T.A., Dykes, R.W., Gloor, P. (eds) Neurotransmitters and Cortical Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0925-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0925-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8248-8

  • Online ISBN: 978-1-4613-0925-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics