The Significance of Pentane Measurements in Man

  • C. Deby
  • J. Pincemail
  • Y. Bertrand
  • M. Lismonde
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 139)


Lipoperoxidation of polyunsaturated fatty acids, constituents of cell membranes, is the main feature running out of in vitro experiments on oxygen toxicity (1). Theoretical considerations let us suppose that, in in vivo conditions, lipid autoxidation can occur, explaining some aspects of oxygen toxicity, particularly at the pulmonary level (2). However, until now, no absolutely safe methods have been elaborated, to unequivocally demonstrate the in vivo lipoperoxides production. Theoretically, a safe method would determine a lipoperoxide derivating product which is not further catabolized and which arises exclusively from lipoperoxidative pathway. Different procedures were proposed, each one based on the determination of a particular step, during hydroperoxide decomposition. The steps are the following:
  1. a)

    Peroxidation of polyunsaturated fatty acids, after diene conjugation (3);

  2. b)

    Spontaneous or catalytically accelerated breakdown of hydroperoxides leading to malonaldehyde (MDA) and to other fragments, which become finally hydrocarbons, such as ethane and pentane, or pentanol (4,5).



Methyl Linoleate Diene Conjugation Linoleate Hydroperoxide Hydroperoxide Decomposition Microsomal Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frankel EN, Nowakowska J, and Evans CD. J Am Oil Chem, 38: 161 (1961).CrossRefGoogle Scholar
  2. 2.
    Evans CD. Proc Flavon. Chem. Symp. Campbell Soup Co., p 123 (1961).Google Scholar
  3. 3.
    Horvat RJ, Lane WG, Ng H, and Sheperd AD. Nature, 203: 523 (1964).PubMedCrossRefGoogle Scholar
  4. 4.
    Smouse TH, Mokherjee BD, and Chang SS. Chem Ind, 29: 1301 (1965).Google Scholar
  5. 5.
    Scholz RG, and Ptak LR. J Am Oil Chem Soc, 34: 596 (1966).CrossRefGoogle Scholar
  6. 6.
    Evans CD, List GR, Dolev A, McConnell DG, and Hoffmann RL. Lipids. 2: 432 (1967).PubMedCrossRefGoogle Scholar
  7. 7.
    Donovan DH, and Menzel DB. Experientia. 34: 775 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    Dumelin EE, and Tappel AL. Lipids, 12: 894 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    Evans CD, List GR, Hoffmann RL, and Moser HA. J Am Oil Chem Soc, 46: 501 (1969).CrossRefGoogle Scholar
  10. 10.
    Jarvie PK, Lee GD, Erickson DR, and Burkus EA. J Am Chem Oil Chem Soc, 48: 121 (1971).CrossRefGoogle Scholar
  11. 11.
    Riely C, Cohen G, and Lieberman M. Science, 183: 208 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    Dillard CJ, Dumelin EE, and Tappel AL. Lipids, 12: 109 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    Tappel AL, and Dillard CJ. Fed Proc, 40: 174 (1981).PubMedGoogle Scholar
  14. 14.
    Hafeman DG, and Hoekstra WG. J Nutr, 107: 656 (1977).PubMedGoogle Scholar
  15. 15.
    Frommer U, Ullrich V, Staundinger HJ. Hoppe-Seyler’s Z Physiol Chem, 351: 903 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    Frank H, Hintze T, Bimboes D, and Remmer H. Toxicol Appl Pharmacol, 56 337 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Müller A, Graf P, Wendel A, and Sies H. FEBS Lett, 126: 241 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    Lawrence GD, and Cohen G. Anal Biochem, 122: 283 (1982).PubMedCrossRefGoogle Scholar
  19. 18b.
    Lawrence GD, and Cohen G. Methods Enzymol, 105: 305 (1984).PubMedCrossRefGoogle Scholar
  20. 19.
    Filser JG, Bolt HM, Muliawan H, and Kappur H. Arch Toxicol, 52: 135 (1983).PubMedCrossRefGoogle Scholar
  21. 20.
    Müller A, and Sies H. Methods Enzymol, 105: 311 (1984).PubMedCrossRefGoogle Scholar
  22. 21.
    Lawrence G, Cohen G, Machlin LJ. Ann NY Acad Sci, 393: 227 (1982).CrossRefGoogle Scholar
  23. 22.
    Tappel AL. Free Radical Biol, 4: 1 (1980).Google Scholar
  24. 23.
    Thomas MJ, Hinson TR, Adair NE, Hiner L, McLee BD. in: IV Int. Conf. Superoxide and Superoxide Anion. Roma, September 1985. Abstract book p 98.Google Scholar
  25. 24.
    Morita S, Snider MT, and Inada Y. Anesthesiology, 64: 730 (1986).PubMedCrossRefGoogle Scholar
  26. 25.
    Dillard CJ, Litov RE, Savin WM, Dumelin EE, and Tappel AL. APPI Phvsiol Respir Environ Exercise Physiol, 45: 927 (1978).Google Scholar
  27. 26.
    Wade CR, and Van Rij AM. Anal Biochem, 150: 1 (1985).PubMedCrossRefGoogle Scholar
  28. 27.
    Deby C, Pincemail J, Bertrand Y, Lismonde M, Lamy M, and Goutier R. in : 2e Reunion Groupe de Contact “Oxygen Metabolism”. Liege, June 6, 1986.Google Scholar
  29. 28.
    Gelmont D, Stein RA, and Mead JF. Biochem Biophys Res Commun, 102: 932 (1981).PubMedCrossRefGoogle Scholar
  30. 29.
    Deby C, Deby-Dupont G, Hans P, Pincemail J, and Neuray J. Experientia, 39: 1113 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. Deby
    • 1
  • J. Pincemail
    • 1
  • Y. Bertrand
    • 2
  • M. Lismonde
    • 3
  1. 1.Laboratoire de Biochimie et de RadiobiologieUniversité de Liège, Institut de ChimieLiège IBelgium
  2. 2.Bloc opératoireClinique Sainte-ElizabethNamurBelgium
  3. 3.Service d’AnesthésiologieHôpital de Bavière, Université de LiègeLiègeBelgium

Personalised recommendations