Skip to main content

Calculation of Elastic Constants Using Molecular Dynamics

  • Chapter
Condensed Matter Theories
  • 355 Accesses

Abstract

Ray and Rahman have developed a useful method to determine elastic constants in molecular dynamics computer simulations. The adiabatic elastic constants are contained in a formula involving fluctuations in the microscopic stress tensor. Mij, in the microcanonical or EhN ensemble, whereas the isothermal elastic constants are contained in a fluctuation formula of the same form in the canonical or ThN ensemble. Here, E is the system energy, h is a 3x3 matrix constructed from the three vectors spanning the periodically repeating computational cell: h=(a,b,c), N is the particle number, and T is the system temperature. For a potential U which depends only upon the distances between the particles (and is not necessarily pairwise additive) this formula gives the elastic constants as a sum of three terms: a fluctuation term, a kinetic term and the Born contribution which depends upon the potential U. In the static Born method of calculating elastic constants, we have only the Born term evaluated at the static lattice positions of the atoms. The fluctuation equation furnishes a practical method of calculating elastic constants which introduces temperature contributions to the static Born values, producing a significant difference.

We shall give results of our calculations for a nearest neighbor Lennard-Jones system, for which independent Monte Carlo data is available, and for silicon using the 2- and 3-body Stillinger-Weber potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. C. Andersen, J. Chem Phys. 72:2384 (1980).

    Article  CAS  Google Scholar 

  2. M. Parrinello and A. Rahman, Phys. Rev. Lett. 45:1196 (1980).

    Article  CAS  Google Scholar 

  3. M. Parrinello and A. Rahman, J. Appl. Phys. 52:7182 (1981).

    Article  CAS  Google Scholar 

  4. J. Ray and A. Rahman, J. Chem. Phys. 80:4423 (1984).

    Article  CAS  Google Scholar 

  5. R. N. Thurston, in Physical Acoustics, W. P. Mason, ed., Academic, New York (1964), Vol 1, Part A.

    Google Scholar 

  6. S. Nosé, Mol. Phys. 52:255 (1984)

    Article  Google Scholar 

  7. S. Nosé, J. Chem. Phys. 81:511 (1984).

    Article  Google Scholar 

  8. J. Ray and A. Rahman, J. Chem. Phys. 82:4243 (1985).

    Article  CAS  Google Scholar 

  9. M. Parrinello and A. Rahman, J. Chem. Phys. 76:2662 (1982).

    Article  CAS  Google Scholar 

  10. J. R. Ray, J. Appl. Phys. 53:6441 (1982).

    Article  Google Scholar 

  11. J. R. Ray and H. W. Graben, “Fundamental Treatment of the Isoenthalpic-Isobaric Ensemble,” to appear in Phys. Rev. A, and references contained therein.

    Google Scholar 

  12. E. R. Cowley, Phys. Rev. B 28:3160 (1983).

    Article  Google Scholar 

  13. M. Parrinello and A. Rahman, unpublished results.

    Google Scholar 

  14. M. Sprik, R. W. Impey and M. L. Klein, Phys. Rev. B 29:4368 (1984).

    Article  CAS  Google Scholar 

  15. J. R. Ray, M. C. Moody and A. Rahman, Phys. Rev. B 32:733 (1985).

    Article  CAS  Google Scholar 

  16. J. R. Ray, M. C. Moody and A. Rahman, Phys. Rev. B 33:895 (1986).

    Article  Google Scholar 

  17. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31:5262 (1985).

    Article  CAS  Google Scholar 

  18. M. D. Kluge, J. R. Ray and A. Rahman, “Molecular Dynamic Calculation of Elastic Constants of Silicon,” J. Chem. Phys., to appear.

    Google Scholar 

  19. K. H. Hellwege, editor, Landolt-Börnstein: Crystal and Solid State Physics, Vol. 11, Springer-Verlag, Berlin (1979); p. 116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Ray, J.R., Rahman, A. (1987). Calculation of Elastic Constants Using Molecular Dynamics. In: Vashishta, P., Kalia, R.K., Bishop, R.F. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0917-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0917-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8244-0

  • Online ISBN: 978-1-4613-0917-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics