Extended Coupled Cluster Method: Quantum Many-Body Theory Made Classical

  • J. Arponen
  • R. F. Bishop
  • E. Pajanne


We focus attention in this paper on how the general quantum many-body problem can be cast in the form of a variational principle for a specified action functional. After some preliminary discussion in Section 2 concerning the algebra of the many-body operators and the development of a convenient shorthand notation to describe it, we show in Section 3 how each of the configuration-interaction (CI)1 method, the normal coupled cluster method (CCM),2–6 and an extended version of the CCM,7,8 can be derived by specific parametrisations of the ground-state bra and ket wavefunctions in the action functional. In each case we make contact and comparison with time-independent perturbation theory, and we discuss the various “tree-diagram” structures that emerge in each case.


Coherent State Functional Derivative Arbitrary Operator Couple Cluster Method Ideal Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. K. Nesbet, Phys.Rev. 109:1632 (1958).CrossRefGoogle Scholar
  2. 2.
    F. Coester, Nucl.Phys. 7:421 (1958).CrossRefGoogle Scholar
  3. 3.
    F. Coester and H. Kümmel, Nucl.Phys. 17:477 (1960).CrossRefGoogle Scholar
  4. 4.
    H. Kümmel, K. H. Lührmann and J. G. Zabolitzky, Phys.Reports 36C:1 (1978),Google Scholar
  5. 5.
    V. Kvasnička, V. Laurinč and S. Biskupič, Phys.Reports 90C:160 (1982).Google Scholar
  6. 6.
    H. Kümmel, in: “Nucleon-Nucleon Interaction and Nuclear Many-Body Problems”, S. S. Wu and T. T. S. Kuo (eds.), World Scientific, Singapore (1984), p.46.Google Scholar
  7. 7.
    J. Arponen, Ann.Phys. (N.Y.) 151:311 (1983).CrossRefGoogle Scholar
  8. 8.
    J. Arponen and E. Pajanne, in: “Recent Progress in Many-Body Theories”, H. Kümmel and M. L. Ristig (eds.), Lecture Notes in Physics Vol 198, Springer-Verlag, Berlin (1984), p.319.CrossRefGoogle Scholar
  9. 9.
    J. Hubbard, Proc.Roy.Soc. London A240:539 (1957).Google Scholar
  10. 10.
    J. Goldstone, Proc.Roy.Soc. London A239:267 (1957).Google Scholar
  11. 11a.
    B. H. Brandow, Phys.Rev. 152:863 (1966);CrossRefGoogle Scholar
  12. 11b.
    B. H. Brandow, Rev.Mod.Phys. 39:771 (1967);CrossRefGoogle Scholar
  13. 11b.
    B. H. Brandow, Ann.Phys. (N.Y.) 57:214 (1970).CrossRefGoogle Scholar
  14. 12a.
    R. F. Bishop and K. H. Lührmann, Phys.Rev. B17:3757 (1978);Google Scholar
  15. 12a.
    R. F. Bishop and K. H. Lührmann, Phys.Rev. 26:5523 (1982).CrossRefGoogle Scholar
  16. 13.
    R. F. Bishop, in: “Nucleon-Nucleon Interaction and Nuclear Many-Body Problems”, S. S. Wu and T. T. S. Kuo (eds.). World Scientific, Singapore (1984), p.604.Google Scholar
  17. 14.
    K. Szalewicz, J. G. Zabolitzky, B. Jeziorski and H. J. Monkhorst, J.Chem.Phys. 81:2723 (1984).CrossRefGoogle Scholar
  18. 15a.
    K. Emrich, Nucl.Phys. A351:379, (1981).Google Scholar
  19. 15b.
    K. Emrich, Nucl.Phys. A351:397 (1981).Google Scholar
  20. 16a.
    R. J. Glauber, Phys.Rev.Lett. 10:84 (1963);CrossRefGoogle Scholar
  21. 16b.
    R. J. Glauber, Phys.Rev. 130:2529 (1963);CrossRefGoogle Scholar
  22. 16c.
    R. J. Glauber, Phys.Rev. 131:2766 (1963).CrossRefGoogle Scholar
  23. 17.
    J. R. Klauder and B.-S. Skagerstam, “Coherent States — Applications in Physics and Mathematical Physics”, World Scientific, Singapore (1985).Google Scholar
  24. 18.
    R. F. Bishop, in: “Recent Progress in Many-Body Theories”, P. J. Siemens and R. A. Smith (eds.), Lecture Notes in Physics, Springer-Verlag Berlin (1986).Google Scholar
  25. 19.
    H. Kummel, Nucl.Phys. A317:199 (1979).Google Scholar
  26. 20.
    T. Holstein and H. Primakoff, Phys.Rev. 58:1098 (1940).CrossRefGoogle Scholar
  27. 21.
    F. J. Dyson, Phys.Rev. 102:1217, 1230 (1956).Google Scholar
  28. 22.
    J. Schwinger, in: “Quantum Theory of Angular Momentum”, L. C. Biedenharn and H. van Dam (eds.), Academic Press, New York (1956) p.229.Google Scholar
  29. 23.
    T. Marumori, M. Yamamura and A. Tokunaga, Prog.Theor.Phys. 31:1009 (1964).CrossRefGoogle Scholar
  30. 24.
    D. Janssen, F. Dönau, S. Frauendorf and R. V. Jolos, Nucl.Phys. A172:145 (1971).Google Scholar
  31. 25.
    P. Garbaczewski, Phys.Reports 36C:65 (1978).CrossRefGoogle Scholar
  32. 26a.
    D. Bohm and D. Pines, Phys.Rev. 82:625 (1951);CrossRefGoogle Scholar
  33. 26b.
    D. Bohm and D. Pines, Phys.Rev. 92:609 (1953);CrossRefGoogle Scholar
  34. 26c.
    D. Pines, Phys.Rev. 92:626 (1953).CrossRefGoogle Scholar
  35. 27.
    J. Arponen, R. F. Bishop and E. Pajanne, the succeeding article in this volume.Google Scholar
  36. 28.
    J. Arponen, R. F. Bishop, E. Pajanne and N. I. Robinson, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. Arponen
    • 1
  • R. F. Bishop
    • 2
  • E. Pajanne
    • 3
  1. 1.Department of Theoretical PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of MathematicsUniversity of Manchester Institute of Science and TechnologyManchesterEngland
  3. 3.Research Institute for Theoretical PhysicsHelsinkiFinland

Personalised recommendations