Skip to main content

Quantum Monte Carlo and the Equation of State of Liquid 3He

  • Chapter
Condensed Matter Theories
  • 254 Accesses

Abstract

The accurate and efficient calculation from microscopic interactions of the macroscopic properties of bulk liquid 3He at zero temperature has been a perennial goal of condensed matter theorists. Seen as a proving ground for many-fermion theories and methods, 3He continues to occupy the attention of many of the participants in this Workshop.1 Significant progress has been realized over the past several years in refining interatomic potentials, wave functions, and calculational schema employed to attack the many-body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See “Condensed Matter Theories,” Vol. 1, F. Malik, ed., (Plenum Press, New York, 1986), and present volume.

    Google Scholar 

  2. For good reviews of quantum Monte Carlo methods and applications, see J. Zabolitzky, in “Progress in Particle and Nuclear Physics,” A. Faessler, ed.. Vol. 16 (Pergamon, Oxford, 1986); and “Proceedings of the Conference on Frontiers of Quantum Monte Carlo,” J. Stat. Phys. 43 (1986).

    Google Scholar 

  3. R.A. Aziz, V.P.S. Nain, J.S. Cerley, W.L. Taylor, and G.T. McConville, J. Chem. Phys. 70, 4330 (1979).

    Article  CAS  Google Scholar 

  4. E. Krotscheck, R.A. Smith, J.W. Clark, and R.M. Panoff, Phys. Rev. B24, 6383 (1981).

    Google Scholar 

  5. V.R. Pandharipande and H. Bethe, Phys. Rev. C7, 1312 (1972).

    Google Scholar 

  6. D.M. Ceperley, G.V. Chester, and M.H. Kalos, Phys. Rev. B16, 3081 (1977).

    Google Scholar 

  7. M.A. Lee, K.E. Schmidt, M.H. Kalos and G.V. Chester, Phys. Rev. Lett. 46, 728 (1981).

    Article  CAS  Google Scholar 

  8. K.E. Schmidt, M.A. Lee, M.H. Kalos and G.V. Chester, Phys. Rev. Lett. 47, 807 (1981).

    Article  CAS  Google Scholar 

  9. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  10. M. Rao and B.J. Berne, J. Chem. Phys. 77, 129 (1979).

    Article  Google Scholar 

  11. E. Manousakis, V.R. Pandharipande, and Q.N. Usmani, Phys. Rev. B31, 7022 (1985).

    Google Scholar 

  12. M.H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A9, 2178 (1974).

    Google Scholar 

  13. D.M. Ceperley and M.H. Kalos, in “Monte Carlo Methods in Statistical Physics,” K. Binder, ed., Topics in Current Physics, Vol. 7 (Springer, Berlin, Heidelberg, New York, 1979) Chap. 4.

    Google Scholar 

  14. K.E. Schmidt and M.H. Kalos, in “Applications of the Monte Carlo Method in Statistical Physics,” K. Binder, ed.. Topics in Current Physics, Vol. 36 (Springer, Berlin, Heidelberg, New York, 1984).

    Google Scholar 

  15. K.E. Schmidt and J.W. Moskowitz, J. Stat. Phys. 43, 1027 (1986).

    Article  Google Scholar 

  16. J.W. Moskowitz and K.E. Schmidt, J. Chem. Phys. 15, 2868 (1986).

    Article  Google Scholar 

  17. N. Metropolis and S. Ulam, J. AM. Stat. Assoc. 44 335 (1949).

    Article  CAS  Google Scholar 

  18. P.A. Whitlock, D.M. Ceperley, G.V. Chester, and M.H. Kalos, Phys. Rev. B19, 5598 (1979).

    Google Scholar 

  19. M.H. Kalos, M.A. Lee, P.A. Whitlock and G.V. Chester, Phys. Rev. B24, 115 (1981).

    Google Scholar 

  20. J. Carlson and M.H. Kalos, Phys. Rev. C32, 1735 (1985).

    Google Scholar 

  21. J.B. Anderson, J. Chem Phys. 63, 1499 (1975).

    Article  CAS  Google Scholar 

  22. J.B. Anderson, J. Chem Phys. 65, 4121 (1976)

    Article  CAS  Google Scholar 

  23. J.B. Anderson, J. Chem Phys. 73, 3897 (1980).

    Google Scholar 

  24. P.E. Sokol, K. Sköld, D.L. Price and R. Kleb, Phys. Rev. Lett. 54, 909 (1985).

    Article  CAS  Google Scholar 

  25. J. Carlson, R.M. Panoff, K.E. Schmidt, P.A. Whitlock, and M.H. Kalos, Phys. Rev. Lett. 55, 2367(C) (1985).

    Google Scholar 

  26. E. Krotscheck, Phys. Rev. B33, 3158 (1986).

    Google Scholar 

  27. P.A. Whitlock and R.M. Panoff, J. Can. Phys., “Proceedings of Banff Conference on Quantum Fluids and Solids,” to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Panoff, R.M. (1987). Quantum Monte Carlo and the Equation of State of Liquid 3He. In: Vashishta, P., Kalia, R.K., Bishop, R.F. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0917-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0917-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8244-0

  • Online ISBN: 978-1-4613-0917-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics