Order and Chaos in Neural Systems

  • K. E. Kürten
  • J. W. Clark


The occurrence of chaos in continuous-time nerve-net models is demonstrated in randomly connected networks of 26 and 80 neurons. For nets of sizeable dimensions one can conclude that chaos is a quite common occurrence; this may have important biological implications.


Firing Rate Lyapunov Exponent External Input Periodic Case Lyapunov Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    R. B. Stein, K. V. Leung, D. Mangeron, and M. N. Oguzlöreli, Kybernetik 15, 1 (1974)CrossRefGoogle Scholar
  2. 1b.
    R. B. Stein, K. V. Leung, M. N. Oguztöreli, and D. W. Williams, Kybernetik 14, 223 (1974); and references cited therein.Google Scholar
  3. 2.
    H. G. Shuster, Deterministic Chaos: An Introduction (Physik-Verlag, Weinheim, 1984).Google Scholar
  4. 3.
    K. E. Kürten and J. W. Clark, Phys. Lett. 114A, 413 (1986).Google Scholar
  5. 4.
    S. Newhouse, Publ. Math. IHES 50, 101 (1980).Google Scholar
  6. 5.
    A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica 16D, 285 (1985).Google Scholar
  7. 6.
    P. Grassberger and I. Procaccia, Physica 9D, 189 (1983).Google Scholar
  8. 7a.
    E. Harth, IEEE Trans. Systems Man Cybernetics SMC-13, 782 (1983)Google Scholar
  9. 7b.
    M. R. Guevara, L. Glass, M. C. Mackey, and A. Shrier, IEEE Trans. Systems Man Cybernetics SMC-13, 790 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. E. Kürten
    • 1
  • J. W. Clark
    • 2
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnWest Germany
  2. 2.McDonnell Center for the Space Sciences and Department of PhysicsWashington UniversitySt LouisUSA

Personalised recommendations