Skip to main content

An Analytic Regularization For Supersymmetry Anomalies

  • Chapter
Super Field Theories

Part of the book series: NATO Science Series ((NSSB,volume 160))

  • 296 Accesses

Abstract

In the originally devised form of dimensional regularization [1–4], a theory in D (≡ integer) dimensions is defined as the limit ε→0 of a theory in d ≡ D + 2ε dimensions. The method is incompatible with supersymmetry [5–8], since the algebras for vectors and spinors in a supersymmetric theory depend differently on D, so that supersymmetry is manifestly broken in the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. G. t’Hooft and M. Veltman, Nucl. Phys. B44(1972) 189.

    Google Scholar 

  2. C.G. Bellini and J.J. Giambiagi, Nuovo Cimento B12(1972) 20.

    Google Scholar 

  3. J.F. Ashmore, Nuovo Cimento 4(1972) 289.

    Google Scholar 

  4. See also the review; G. Leibbrandt, Rev. Mod. Phys. 47(1975) 849.

    Google Scholar 

  5. J. Wess, B. Zumino, Nucl. Phys. B70(1974) 39.

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Salam, J. Strathdee, Nucl. Phys. B76(1974) 477.

    Article  MathSciNet  ADS  Google Scholar 

  7. B. deWit, D.Z. Freedman, Phys. Rev. D12(1975) 2286.

    Google Scholar 

  8. See also the review, M.F. Sohnius, Phys. Rep. 128(1985) 39; and the book, J. Wess, J. Bagger, “Supersymmetry and Supergravity” (Princeton University Pres, 1983).

    Article  MathSciNet  ADS  Google Scholar 

  9. W. Siegel, Phys. Lett. 84B(1979) 193; Phys. Lett. 94B(1980) 37.

    Google Scholar 

  10. L.V. Ardeev, A.A. Vladimirov, Nucl. Phys. B214(1983) 62.

    Google Scholar 

  11. S. Adler, Phys. Rev. 177(1969) 2426.

    Article  ADS  Google Scholar 

  12. J.S. Bell, R. Jackiw, Nuovo Cimento 60A(1969) 47.

    ADS  Google Scholar 

  13. S. Adler, W.A. Bardeen, Phys. Rev. 182(1969) 1517.

    Article  ADS  Google Scholar 

  14. S.B. Treiman, R. Jackiw, B. Zumino and E. Witten, “Current Algebra and Anomalies” (World Scientific, Singapore, 1985).

    MATH  Google Scholar 

  15. W.A. Bardeen and A.R. White, “Symposium on Anomalies, Geometry and Topology” (World Scientific, Singapore, 1985).

    Google Scholar 

  16. K. Fujikawa, contribution to this volume.

    Google Scholar 

  17. J.M. Jauch, F. Rohrlich, “The Theory of Photons and Electrons” (Springer-Verlag, Berlin, 1976) pp: 457–460.

    Google Scholar 

  18. V. Elias, G. McKeon, R.B. Mann, Phys. Rev. D28(1983) 1978; Nucl. Phys. B229(1983) 487.

    Google Scholar 

  19. V. Elias, contribution to this volume.

    Google Scholar 

  20. D. Ahyeampong, R. Delbourgo, Nuovo Cimento 17A(1973) 578; 19A(1974) 219.

    Google Scholar 

  21. P.M. Chanowitz, M. Furman, I. Hinchliffe, Nucl. Phys. B159(1979) 225.

    Article  ADS  Google Scholar 

  22. Y. Fujii, N. Ohta, H. Taniyuchi, Nucl. Phys. B177(1981) 297.

    Article  ADS  Google Scholar 

  23. P.H. Frampton, T.W. Kephart, Phys. Rev. D28(1983) 1010.

    ADS  Google Scholar 

  24. C.G. Bellini, J.J. Giambiagi, a.G. Dominquez, Nuovo Cimento 31(1964) 550.

    Google Scholar 

  25. E. Speer, J. Math. Phys. 9(1968) 1404; 15(1974) 1.

    Google Scholar 

  26. P. Breitenlohner, H. Mitter, Nucl. Phys. B7(1968) 443; Nuovo Cimento 10A(1972) 655.

    Google Scholar 

  27. S. Kummar, Y. Fujii, Prog. Theo. Phys. 69(1983) 653.

    Article  ADS  Google Scholar 

  28. S. Ferrara, B. Zumino, Nucl. Phys. B87(1975) 207.

    Article  ADS  Google Scholar 

  29. L. Abbott, M. Grisara, H. Schnitzer, Phys. Rev. D16(1977) 2995.

    ADS  Google Scholar 

  30. T.E. Clark, O. Piguet, K. Sihold, Nucl. Phys. B143(1978) 445.

    Article  ADS  Google Scholar 

  31. H. Nicolai, P.K. Townsend, Phys. Lett. 93B(1980) 111.

    ADS  Google Scholar 

  32. P. Majamdar, E. Poggio, H. Schnitzer, Phys. Rev. D21(1980) 2203.

    ADS  Google Scholar 

  33. O. Piguet, K. Sibold, Nucl. Phys. B196(1982) 428.

    Article  ADS  Google Scholar 

  34. N.K. Nielsen, Nucl. Phys. B247(1984) 157; B252(1985) 401.

    Google Scholar 

  35. I.N. McArthur, H. Osborn, Nucl. Phys. B268(1986) 573.

    Article  MathSciNet  ADS  Google Scholar 

  36. H.C. Lee, M.S. Milgram, J. Math. Phys. 26(1985) 1793.

    Article  MathSciNet  ADS  Google Scholar 

  37. H.C. Lee, M.S. Milgram, Phys. Rev. 55(1986) 2172; Nucl. Phys. B268(1986) 543.

    Google Scholar 

  38. H.C. Lee, M.S. Milgram Phys. Lett. 133B(1983) 320; Ann. Phys. (NY) 157(1984) 408; H.C. Lee, Chi. J. Phys. 23(1985) 90.

    Google Scholar 

  39. H.C. Lee, Q. Ho-Kim, F.Q. Liu, CRNL preprint, TP-86-VI-11.

    Google Scholar 

  40. M. Veltman, “SCHOONSCHIP” (Univ. Michigan, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lee, H.C., Ho-Kim, Q. (1987). An Analytic Regularization For Supersymmetry Anomalies. In: Lee, H.C., Elias, V., Kunstatter, G., Mann, R.B., Viswanathan, K.S. (eds) Super Field Theories. NATO Science Series, vol 160. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0913-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0913-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8242-6

  • Online ISBN: 978-1-4613-0913-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics