Skip to main content

Light-Cone Physics

  • Chapter
Super Field Theories

Part of the book series: NATO Science Series ((NSSB,volume 160))

  • 301 Accesses

Abstract

In classical physics differential equations are used to describe the evolution of a physical system. A well-defined problem must then include a set of initial values. In the quantum case, the corresponding information is provided when canonical commutators are specified. In a non-relativistic case these are specified on a surface of equal time, since constant time surfaces are the only ones that every particle trajectory crosses exactly once. In the relativistic case the existence of an upper bound to velocities means that the concept of simultaneity becomes ambiguous. Through each space-time point we can draw a hypercone (the light-cone); events occuring o’utside the light-cone cannot influence, or be influenced by an event at the tip of the cone. It is then a matter of definition how the surface of simultaneity is drawn. Any space-like surface may be used to set the initial data (or canonical commutators). Dirac1) observed that initial data can be given on various surfaces, leading to different forms of dynamics. The conventional formulation is to specify a surface at x0 = 0, but here I will use another choice of Dirac, namely a hypersurface tangent to the lightcone, defined by x0, where we use the notation x± = $\frac{1}{{\sqrt 2}}$ (x° ± xd-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A.M. Dirac, Rev. Mod. Phys. 26 (1949) 392.

    Article  MathSciNet  ADS  Google Scholar 

  2. R.K. Sachs, J. Math. Phys. 3 (1962) 908. H. Müller zum Hagen and H.J. Seifert, Gen. Rel. Grav. 8 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. A. Neville and F. Rohrlich, Nuovo Cim. 1A (1971) 625.

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Fubini and G. Furlan, Physics 1 (1965) 229.

    Google Scholar 

  5. S. Weinberg, Phys. Rev. 150 (1966) 1313.

    Article  ADS  Google Scholar 

  6. S.-J. Chang and S.-K. Ma, Phys. Rev. 180 (1969) 1506, J.B. Kogut and D.E. Soper, Phys. Rev. D1, (1970) 2901.

    Article  ADS  Google Scholar 

  7. S.J. Brodsky, R. Roskies and R. Suaya, Phys. Rev. D8 (1973) 4574, J.H. Ten Eyck and F. Rohrlich, Phys. Rev. D9 (1974) 2237, J.M. Cornwall, Phys. Rev. D10 (1974) 500, C.B. Thorn, Phys. Rev. D19 (1979), 639, 1934.

    ADS  Google Scholar 

  8. P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Nucl, Phys. B56 (1973) 109.

    Article  ADS  Google Scholar 

  9. For recent reviews, see J.H. Schwarz, Lectures at Scottish Summer School 1985. M.B. Green in “Workshop on Unified String Theories”, eds. M.B. Green and O.J. Gross (World Scientific 1986). L. Brink, Lectures at “Ecole d’été de physique theorique”, Les Houches 1985.

    Google Scholar 

  10. L. Brink, 0. Lindgren and B.E.W. Nilsson, Nucl. Phys. B212 (1983) 401.

    Article  ADS  Google Scholar 

  11. S. Mandelstarn, Nucl. Phys. B213 (1983) 149, L. Brink, 0. Lindgren and B.E.W. Nilsson, Phys. Lett. 123B (1983) 323.

    Article  ADS  Google Scholar 

  12. M.B. Green and J.H. Schwarz, Nucl. Phys. B218 (1983), 43 M.B. Green, J.H. Schwarz and L. Brink, Nucl. Phys. B219 (1983) 437,M.B. Green and J.H. Schwartz, Nucl. Phys. B243 (1984) 475

    Article  MathSciNet  ADS  Google Scholar 

  13. A.K.H. Bengtsson, L. Brink, M. Cederwall and M. Ögren, Nucl. Phys. B254 (1985) 625.

    Article  ADS  Google Scholar 

  14. P.A.M. Dirac, Can. J. Math. 2 (1980) 129.

    Article  MathSciNet  Google Scholar 

  15. A.K.H. Bengtsson, I. Bengtsson and L. Brink, Nucl. Phys. B227 (1983) 31.

    Article  ADS  Google Scholar 

  16. A.K.H. Bengtsson, thesis ITP-Göteborg (1984).

    Google Scholar 

  17. I. Bengtsson, Phys. Rev. D31 (1985) 2525.

    MathSciNet  ADS  Google Scholar 

  18. H.C. Lee and M.S. Milgram, Phys. Lett. 133B (1983) 320, Nucl. Phys. 268 (1986) 543.

    ADS  Google Scholar 

  19. A.K.H. Bengtsson, I. Bengtsson and L. Brink, Nucl. Phys. B227 (1983) 41.

    Article  ADS  Google Scholar 

  20. L. Brink and A. Tollstén, Nucl. Phys. B249 (1984) 244.

    ADS  Google Scholar 

  21. N. Marcus and A. Sagnotti, Phys. Lett. 135B (1984) 85.

    ADS  Google Scholar 

  22. M.T. Grisaru and W. Siegel, Nucl. Phys. B201 (1982) 292.

    Article  ADS  Google Scholar 

  23. P.S. Howe, K.S. Stelle and P.C. West, Phys. Lett. 124B (1983) 55.

    ADS  Google Scholar 

  24. S. Deser, J.H. Kay and K.S. Stelle, Phys. Rev. Lett. 38 (1977) 527, S. Deser and J.H. Kay, Phys. Lett. 76B (1978) 573, S. Ferrara and P. Van Nieuwenhuizen, Phys. Lett. 78B (1978), 573. P.S. Howe and U. Lindström, Nucl. Phys. B181 (1981), 487 R.E. Kallosh, Phys. Lett. 99B, 122.

    Article  ADS  Google Scholar 

  25. M.B. Green and J.H. Schwarz, Phys. Lett. 122B (1983), 143.

    ADS  Google Scholar 

  26. S. Mandelstam, Nucl. Phys. B64, (1973) 205.

    Article  ADS  Google Scholar 

  27. L. Brink and H.B. Nielsen, Phys. Lett. 45B (1973) 332.

    ADS  Google Scholar 

  28. F. Gliozzi, unpublished (1976).

    Google Scholar 

  29. Y, Nambu, Lectures at Copenhagen Symposium, unpublished (1970), 0. Hara, Progr. Theor. Phys. 46 (1971) 1549. T. Goto, Progr. Theor. Phys. 46 (1971) 1560.

    Google Scholar 

  30. P.M. Ramond, Phys. Rev. D3 (1971) 2415.

    MathSciNet  ADS  Google Scholar 

  31. A. Neveu and J.H. Schwarz, Nucl. Phys. B31 (1971) 86; Phys. Rev. D4 (1971) 1109.

    Article  ADS  Google Scholar 

  32. F. Gliozzi, J. Scherk and D.I. Olive, Phys. Lett. 65B, (1976) 282; Nucl. Phys. B122 (1977) 253.

    ADS  Google Scholar 

  33. L. Brink, P. Di Vecchia and P.S. Howe, Phys. Lett. 65B (1976) 471, S. Deser and B. Zumino, Phys. Lett. 65B (1976) 369.

    ADS  Google Scholar 

  34. M.B. Green and J.H. Schwarz, Phys. Lett. 109B (1982) 444.

    ADS  Google Scholar 

  35. M.B. Green and J.H. Schwarz, Nucl. Phys. B181 (1981) 502.

    Article  ADS  Google Scholar 

  36. M. Ademollo, L. Brink, A. D’Adda, R. d’Auria, E. Napolitano, S. Sciuto, E. Del Guidice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Pettorino and J.H. Schwarz, Nucl. Phys. B111 (1976) 77.

    Article  ADS  Google Scholar 

  37. D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B256 (1985),253; Nucl. Phys.

    Article  MathSciNet  ADS  Google Scholar 

  38. I follow here L. Brink, M. Cederwall and M.B. Green, Institute for Theoretical Physics, Göteborg (1986) to be published.

    Google Scholar 

  39. The last reference in 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Brink, L. (1987). Light-Cone Physics. In: Lee, H.C., Elias, V., Kunstatter, G., Mann, R.B., Viswanathan, K.S. (eds) Super Field Theories. NATO Science Series, vol 160. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0913-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0913-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8242-6

  • Online ISBN: 978-1-4613-0913-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics