Excited State Absorption of Cr3+ in Low Ligand Field Hosts

  • L. J. Andrews
  • S. M. Hitelman


Excited state absorption (ESA) can exert a major influence in determining the usefulness of a fluorescent material for laser applications. For the specific case of Cr3+, a single configurational coordinate model is developed to predict the ESA consequences of a 4T2g (low ligand field) or (high ligand field) lowest excited state. Pulse-probe ESA measurements are conducted for Cr3+ in a fluoride elpasolite (K2NaScF6) and in two oxide garnets (GSGG and GSAG) to test the predictions for the low field case. In accordance with the model, two ligand field transitions are located at 7,000 and 19,100 cm-l in the garnets, and an intense charge transfer band is absent in the fluoride and ligand field transition is located near 19,500 cm-l. Saturation experiments are used to determine the ESA cross-sections. A comparison is made with the published ESA spectrum of emerald:Cr3+ (high ligand field) to illustrate the substantial difference between absorption from 2E and 4T2 initial states.


Pump Intensity Ligand Field Excited State Absorption Lower Excited State Lawrence Livermore Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. F. Johnson, H. J. Guggenheim, D. Bahnck, and A. M. Johnson, Opt. Letters 8, 371 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    P. F. Moulton, R. E. Fahey, and W. F. Krupke, “Laser Program Annual Report 82,” Lawrence Livermore Laboratory, p. 7-78.Google Scholar
  3. 3.
    P. F. Moulton, R. E. Fahey, and W. F. Krupke, “Laser Program Annual Report 83,” Lawrence Livermore Laboratory, p. 6-94.Google Scholar
  4. 4.
    M. L. Shand and J. C. Walling, IEEE J. Quantum Electronics, QE- 18, 1152 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    M. L. Shand and H. P. Jenssen, IEEE J. Quantum Electronics, QE- 19, 480 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    D. S. Hamilton, “Tunable Solid State Lasers,” (Springer-Verlag, Berlin, (1985), p. 80.Google Scholar
  7. 7.
    A. M. Bonch-Bruevich, T. K. Razumova, and Ya. A. Imas, Optics and Spectroscopy 20, 579 (1966).ADSGoogle Scholar
  8. 8.
    W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, Phys. Rev. B, 11, 60 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Krause, I. Trabjerg, and C. J. Ballhausen, Chem. Phys. Lett. 3, 297 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    G. Huber and K. Petermann, “Tunable Solid State Lasers,” (Springer-Verlag, Berlin, 1985), p.11.Google Scholar
  11. 11.
    E. I. Solomon and C. J. Ballhausen, Mol. Physics 29, 279 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    C. W. F. T. Pistorius, J. Chem. Phys. 29, 1328 (1958).ADSCrossRefGoogle Scholar
  13. 13.
    K. Nakamoto, “Inrared Spectra of Inorganic and Coordination Compounds,” (John Wiley, New York, 1963), pp. 10-14, 45–46.Google Scholar
  14. 14.
    P. Greenough and A. G. Paulusz, J. Chem. Phys. 70, 1967 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    D. S. McClure in “Electronic State of Inorganic Compounds: New Experimental Techniques,” ed. P. Day, D. Reidel, 1975, p. 113.Google Scholar
  16. 16.
    J. Dolan, U. of Connecticut, private communication.Google Scholar
  17. 17.
    Unpublished results.Google Scholar
  18. 18.
    B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, Appl. Phys. B 30, 117 (1983).Google Scholar
  19. 19.
    J. L. Emmett, W. F. Krupke, and W. R. Sooy, “The Potential of High-Average Power Solid State Lasers,” awrence Livermore Laboratory, UCRL-53571 (1984), p. 30.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. J. Andrews
    • 1
  • S. M. Hitelman
    • 1
  1. 1.GTE Laboratories, IncorporatedWalthamUSA

Personalised recommendations